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PHY1520H Graduate Quantum Mechanics. Lecture 20: Perturbation
theory. Taught by Prof. Arun Paramekanti

Disclaimer — Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof.
Paramekanti, covering ch. 5 [1] content.

1.1 Simplest perturbation example.

Given a 2 x 2 Hamiltonian H = Hy + V, where

a c
H= [c* b} , (1.1)
note thatif c =0 is
a 0
nem- [t 0] 02
The off diagonal terms can be considered to be a perturbation
0 ¢
V= [c* 0] , (1.3)

with H = Hy + V.

Energy levels after perturbation ~ We can solve for the eigenvalues of H easily, finding

a+b a—0b\? 5
=t (50 et 0

Plots of a few a, b variations of A+ are shown in fig. 1.1. The quadratic (non-degenerate) domain is

found near the c = 0 points of all but the first (a = b ) plot, and the degenerate (linear in Ic|?) regions
are visible for larger values of c.
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Figure 1.1: Plots of A for (a,b) € {(1,1),(1,0),(1,5),(-8,8)}

Some approximations ~ Suppose that |c| < |a — b|, then

_a+b |a—b Ic|?
If a > b, then
a+b  a—0> Ic]?
A~ o=t <1+2(a_b)2>. (1.6)
_a+b a-—b ER
)\+ > 5 <1+2(u_b)2>
2
=a+(a—0D) ! 5 (1.7)
(a—"b)
a+ el
o a-b



and
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This adiabatic evolution displays a “level repulsion”, quadratic in |c|, and is described as a non-

degenerate permutation.
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If [c| > |a — b|, then
c 2
a+b 1 a—b\>
v e\ 2
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Here we loose the adiabaticity, and have “level repulsion” that is linear in |c|. We no longer have
the sign of a — b in the expansion. This is described as a degenerate permutation.

1.2 General non-degenerate perturbation
Given an unperturbed system with solutions of the form
Ho [n®) = E |n®), (1.10)
we want to solve the perturbed Hamiltonian equation
(Ho+AV) |n) = (E,§0>+An) In) . (1.11)
Here An is an energy shift as that goes to zero as A — 0. We can write this as
(E,‘?) . Ho) 1) = (AV — Ay) |n). (1.12)
We are hoping to iterate with application of the inverse to an initial estimate of |n)
©) -
) = (En - Ho) (AV = Ay) 1) . (1.13)

This gets us into trouble if A — 0, which can be fixed by using

In) = (Eﬁ?) —Ho)*1 (AV — Ay) |n) + ‘n(0)>, (1.14)



which can be seen to be a solution to eq. (1.12). We want to ask if

(AV = Ay) |n), (1.15)

contains a bit of ]n(0)>? To determine this act with <n(0) on the left

nOl AV = A [n) = (nO] (E9 = Hy) |n)
< ‘ n ] <E1(10)(E’;10)> <n(0>)n> (1.16)

(
0.
)

This shows that |n) is entirely orthogonal to [n(©).
Define a projection operator

P, = ’n(0)> <n(0)‘, (1.17)

which has the idempotent property P2 = P, that we expect of a projection operator.
Define a rejection operator

P,=1- ‘n(0)> <n(o)‘

= X ) ().

m#n

(1.18)

Because |1) has no component in the direction |n(0)>, the rejection operator can be inserted much
like we normally do with the identity operator, yielding

-1_
)= (B~ Ho)  Pu(AV = Ay)|m) + ‘n<0)>, (1.19)
valid for any initial |n).

Power series perturbation expansion Instead of iterating, suppose that the unknown state and un-
known energy difference operator can be expanded in a A power series, say

|n) = ]n())+/\\n1>+/\2|n2>+)\3\n3>+--- (1.20)
and
Ay =Dpg + Ay + A2 Dy + A3A, + - - (1.21)

We usually interpret functions of operators in terms of power series expansions. In the case of

1
(E,SO) - H0> , we have a concrete interpretation when acting on one of the unperturbed eigenstates

1 1
EO _ H, EO _po

This gives
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ny=——Y ‘m(o) m(o)‘ AV — Ap) |n) + ’n(o) , (1.23)
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In) = ‘n Y+ L S AV A ). (1.24)
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From eq. (1.12), note that
v -
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however, we will normalize by setting (n°|n) =1, so
Ap = <n<°)‘ AV |n) . (1.26)

to O(AY) Ifall A",n > 0 are zero, then we have

MmO (70
|no) = ‘n(0>> + Y ‘E(O)>—<E(0)‘ (—Au,) |10 (1.27a)
n n m
Ano <Tl(0)‘1’10> =0 (1.27b)
SO
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0= 1) 029
no = V.
to O(A) Requiring identity for all Al terms means
mON (170
In1) A = ; ‘E(O)>—<E(0)‘ (AV = Ap,A) |no), (1.29)
m#n n m
SO
0) 0)
n1) = ) (m ] (V= An) |no) . (1.30)

m#n E1(10) - E7(1(1))
With the assumption that ‘n(o)> is normalized, and with the shorthand
Vo = <m<0>‘ v ‘n(0>>, (1.31)

that is
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By = (O V [10) = Vi

(1.32)

to O(A?)  The second order perturbation states are found by selecting only the A? contributions to

2 |m(0) (m©] 2
A* |np) Z O O (AV — (MAy, + A%Aw,)) (Ino) + A n)). (1.33)

mn

Because |ng) = [n?), the A2A,,, is killed, leaving

1O {1,
no) = Z ‘)>_<E](£)‘ (V= Ay) n1)
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= ) () ) o
m m l
B oo (V)L oo Vin
m#n Ey’ — Ep I#n Ey" — El
which can be written as
Vv, lVln 0) Vnann
Ing) =) |m ‘ © < -y ’m( —. (1.35)
I, m#n > (Efzo) — ESS)) <E§ZO) — El(o)) m#n > (Eslo) _ ESS))
For the second energy perturbation we have
A2A,, = <n(0)’ AV (A |n)), (1.36)
or
Ap, = <n(0)‘ V |ni)
©) (1.37)
© _|m®)
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That is
Vanmn
Apy =) —— (1.38)
’ m#n E1(10) - E1(1(1))
to O(A®)  Similarly, it can be shown that
I, m#n (En — Em) (En — El ) m#n (E;(P) _ E,(g))
In general, the energy perturbation is given by
AD = <n<o>‘ v ‘n(l—l)>. (1.40)
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