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PHY1520H Graduate Quantum Mechanics. Lecture 21: Non-degenerate
pertubation. Taught by Prof. Arun Paramekanti

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof.

Paramekanti, covering ch. 5 [2] content.

Non-degenerate pertubation theory. Recap.

(1.1)|n〉 = |n0〉 + λ |n1〉 + λ2 |n2〉 + λ3 |n3〉 + · · ·

and

(1.2)∆n = ∆n0 + λ∆n1 + λ2∆n2 + λ3∆n3 + · · ·

(1.3)
∆n1 =

〈
n(0)
∣∣∣V
∣∣∣n(0)

〉
|n0〉 =

∣∣∣n(0)
〉

(1.4)

∆n2 = ∑
m 6=n

∣∣〈n(0)
∣∣V
∣∣m(0)〉∣∣2

E(0)
n − E(0)

m

|n1〉 = ∑
m 6=n

∣∣m(0)〉Vmn

E(0)
n − E(0)

m

Example: Stark effect
(1.5)H = Hatom + eEz,

where Hatom is assumed to be Hydrogen-like with Hamiltonian

(1.6)Hatom =
P2

2m
− e2

4πε0r
,

and wave functions
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(1.7)〈r|ψnlm〉 = Rnl(r)Ylm(θ, φ)

For the first level correction to the energy

(1.8)
∆1 = 〈ψ100| eEz |ψ100〉

= eE
∫ dΩ

4π
cos θ

∫
drr2R2

100(r)

The cosine integral is obliterated, so we have ∆1 = 0.
How about the second order energy correction? That is

(1.9)∆2 = ∑
nlm 6=100

|〈ψ100| eEz |nlm〉|2

E(0)
100 − Enlm

The matrix element in the numerator is the absolute square of

(1.10)V100,nlm = eE
∫

dΩ
1√
4π

cos θYlm(θ, φ)
∫

drr3R100(r)Rnl(r).

For all m 6= 0, Ylm includes a eimφ factor, so this cosine integral is zero. For m = 0, each of the Ylm
functions appears to contain either even or odd powers of cosines. For example:

Y00 =
1

2
√

π

Y10 =
1
2

√
3
π

cos(t)

Y20 =
1
4

√
5
π

(
(3 cos2(t)− 1

)
Y30 =

1
4

√
7
π

(
(5 cos3(t)− 3 cos(t)

)
Y40 =

3
(
(35 cos4(t)− 30 cos2(t) + 3

)
16
√

π

Y50 =
1

16

√
11
π

(
(63 cos5(t)− 70 cos3(t) + 15 cos(t)

)
Y60 =

1
32

√
13
π

(
(231 cos6(t)− 315 cos4(t) + 105 cos2(t)− 5

)
Y70 =

1
32

√
15
π

(
(429 cos7(t)− 693 cos5(t) + 315 cos3(t)− 35 cos(t)

)
Y80 =

1
256

√
17
π

(
(6435 cos8(t)− 12012 cos6(t) + 6930 cos4(t)− 1260 cos2(t) + 35

)

(1.11)

This shows that for even 2k = l, the cosine integral is zero∫ π

0
sin θ cos θ ∑

k
ak cos2k θdθ = 0, (1.12)
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since cos2k(θ) is even and sin θ cos θ is odd over the same interval. We find zero for
∫ π

0 sin θ cos θY30(θ, φ)dθ,
and Mathematica appears to show that the rest of these integrals for l > 1 are also zero.

FIXME: find the property of the spherical harmonics that can be used to prove that this is true in
general for l > 1.

This leaves

(1.13)
∆2 = ∑

n 6=1

|〈ψ100| eEz |n10〉|2

E(0)
100 − En10

= −e2E2 ∑
n 6=1

|〈ψ100| z |n10〉|2

En10 − E(0)
100

.

This is sometimes written in terms of a polarizability α

(1.14)∆2 = −E
2

2
α,

where

(1.15)α = 2e2 ∑
n 6=1

|〈ψ100| z |n10〉|2

En10 − E(0)
100

.

With
P = αE , (1.16)

the energy change upon turning on the electric field from 0→ E is simply −P · dE integrated from
0→ E . Putting P = αE ẑ, we have

(1.17)
−
∫ E

0
pzdE = −

∫ E
0

αEdE

= −1
2

αE2

leading to an energy change −αE2/2, so we can directly compute 〈P〉 or we can compute change
in energy, and both contain information about the polarization factor α.

There is an exact answer to the sum eq. (1.15), but we aren’t going to try to get it here. Instead let’s
look for bounds

∆min
2 < ∆2 < ∆max

2 (1.18)

(1.19)αmin = 2e2 |〈ψ100| z |ψ210〉|2

E(0)
210 − E(0)

100

For the hydrogen atom we have

(1.20)En = − e2

2n2a0
,
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allowing any difference of energy levels to be expressed as a fraction of the ground state energy,
such as

(1.21)
E(0)

210 =
1
4

E(0)
100

=
1
4
−h̄2

2ma2
0

So

(1.22)E(0)
210 − E(0)

100 =
3
4

h̄2

2ma2
0

In the numerator we have

(1.23)

〈ψ100| z |ψ210〉 =
∫

r2dΩ

(
1

√
πa3/2

0

e−r/a0

)
r cos θ

(
1

4
√

2πa3/2
0

r
a0

e−r/2a0 cos θ

)

= (2π)
1√
π

1
4
√

2π
a0

∫ π

0
dθ sin θ cos2 θ

∫ ∞

0

dr
a0

r4

a4
0

e−r/a0−r/2a0

= (2�π)
�
�
�1√
π

1
4
√

2�π
a0

(
−u3

3

∣∣∣∣−1

1

) ∫ ∞

0
s4dse−3s/2

=
1

2
√

2
2
3

a0
256
81

=
1

3
√

2
256
81

a0

≈ 0.75a0.

This gives

(1.24)

αmin =
2e2(0.75)2a2

0
3
4

h̄2

2ma2
0

=
6
4

2me2a4
0

h̄2

= 3
me2a4

0

h̄2

= 3
4πε0

a0
a4

0

≈ 4πε0a3
0 × 3.

The factor 4πε0a3
0 are the natural units for the polarizability.

There is a neat trick that generalizes to many problems to find the upper bound. Recall that the
general polarizability was
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(1.25)α = 2e2 ∑
nlm 6=100

|〈100| z |nlm〉|2

Enlm − E(0)
100

.

If we are looking for the upper bound, and replace the denominator by the smallest energy differ-
ence that will be encountered, it can be brought out of the sum, for

(1.26)αmax = 2e2 1

E210 − E(0)
100

∑
nlm 6=100

〈100| z |nlm〉 〈nlm| z |100〉

Because 〈nlm| z |100〉 = 0, the constraint in the sum can be removed, and the identity summation
evaluated

(1.27)

αmax = 2e2 1

E210 − E(0)
100

∑
nlm
〈100| z |nlm〉 〈nlm| z |100〉

=
2e2

3
4

h̄2

2ma2
0

〈100| z2 |100〉

=
16e2ma2

0

3h̄2 × a2
0

= 4πε0a3
0 ×

16
3

.

The bounds are

3 ≥ α

αat <
16
3

, (1.28)

where

(1.29)αat = 4πε0a3
0.

The actual value is
(1.30)

α

αat =
9
2

.

Example: Computing the dipole moment

〈Pz〉 = αE = 〈ψ100| ez |ψ100〉 . (1.31)

Without any pertubation this is zero. After pertubation, retaining only the terms that are first order
in δψ100 we have

(1.32)〈ψ100 + δψ100| ez |ψ100 + δψ100〉 ≈ 〈ψ100| ez |δψ100〉 + 〈δψ100| ez |ψ100〉 .

Next time: Van der Walls We will look at two hyrdogenic atomic systems interacting where the pair
of nuclii are supposed to be infinitely heavy and stationary. The wave functions each set of atoms are
individually known, but we can consider the problem of the interactions of atom 1’s electrons with
atom 2’s nucleus and atom 2’s electrons, and also the opposite interactions of atom 2’s electrons with
atom 1’s nucleus and its electrons. This leads to a result that is linear in the electric field (unlike the
above result, which is called the quadratic Stark effect).
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Appendix. Hydrogen wavefunctions From [3], with the a0 factors added in.

ψ1s = ψ100 =
1

√
πa3/2

0

e−r/a0 (1.33a)

ψ2s = ψ200 =
1

4
√

2πa3/2
0

(
2− r

a0

)
e−r/2a0 (1.33b)

ψ2px =
1√
2
(ψ2,1,1 − ψ2,1,−1) =

1

4
√

2πa3/2
0

r
a0

e−r/2a0 sin θ cos φ (1.33c)

ψ2py =
i√
2
(ψ2,1,1 + ψ2,1,−1) =

1

4
√

2πa3/2
0

r
a0

e−r/2a0 sin θ sin φ (1.33d)

ψ2pz = ψ210 =
1

4
√

2πa3/2
0

r
a0

e−r/2a0 cos θ (1.33e)

I looked to [1] to see where to add in the a0 factors.
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