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PHY1520H Graduate Quantum Mechanics. Lecture 3: Density matrix
(cont.). Taught by Prof. Arun Paramekanti

Disclaimer — Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof.

Paramekanti, covering ch. 1 [1] content.

Density matrix (cont.) ~An example of a partitioned system with four total states (two spin 1/2 par-
ticles) is sketched in fig. 1.1.
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Figure 1.1: Two spins

An example of a partitioned system with eight total states (three spin 1/2 particles) is sketched in

fig. 1.2.
The density matrix

p=[¥) (¥] (L.1)
is clearly an operator as can be seen by applying it to a state
ple) =1%) (Y1) (1.2)

The quanitity in braces is just a complex number.
After expanding the pure state |¥) in terms of basis states for each of the two partitions

1Y) = Z Conn [m)y [n)g (1.3)
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Figure 1.2: Three spins

With L and R implied for |m) , |n) indexed states respectively, this can be written

¥) =) Cupnl|m)|n). (1.4)
m,n
The density operator is
0 =Y CounCpy o |m)n) Y (m'| (n']. (1.5)
m,n m' !

Suppose we trace over the right partition of the state space, defining such a trace as the reduced
density operator preq

ﬁred = TrR(ﬁ)
=) (A[p|a)
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Computing the matrix element of p,.q, we have

(m|p = Y. CwiCpy 5 (m|m) (m'| i)
mm' i (1.7)

= Z |Cﬁ1,ﬁ .
7l

This is the probability that the left partition is in state 7.



Average of an observable

netization is

as sketched in fig. 1.3.
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Figure 1.3: Magnetic moments from two spins.

The average of some observable is

Y. ChnCorw (m| (n] A n') |m") .

! !
mmn,m’',n

Consider the trace of the density operator observable product

Let

so that

This is just

Left observables

~
Tr(pA) =
mn,m' n' ,m'n"

Z Cm,nc;;;//,n// <m//, i’l”‘ A |m,7’l> .
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Consider

Tr(pA) = Y (mn|¥) (¥ Alm,n).

m,n

I'¥) = ZCmn |m, n),
m,n

Cm/,n/c.:z//,n// <mn‘m/’ 1’l/> <1’I’l”, o

(Y| A|¥) = Te(pA).

(Y| AL|Y) = Tr(pAL)
= Tr, Trr(PAL)
= TI‘L ((TI‘R p) AL))
= Trp, (PreaAL)) -

Suppose we have two spin half particles. For such a system the total mag-
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We see
(Y| AL [¥) = Trr (Prea, L AL) - (1.15)
We find that we don’t need to know the state of the complete system to answer questions about

portions of the system, but instead just need p, a “probability operator” that provides all the required
information about the partitioning of the system.

Pure states vs. mixed states For pure states we can assign a state vector and talk about reduced
scenerios. For mixed states we must work with reduced density matrices.

{Example 1.1: Two particle spin half pure states}

Consider
1
1) = 7 () =) (1.16)
1
2) = N () + 1) (1.17)

For the first pure state the density operator is

p= 2 (14) — L) (1] — (4] (1.18)

What are the reduced density matrices?

oL = Trr (0)

1 1 (1.19)
=5(=DED ) U+ 56GDED 1) (1]
so the matrix representation of this reduced density operator is
. _1]1 0
pL=75 [0 1] . (1.20)
For the second pure state the density operator is
.1
p=5 (110 + [T (M + (11D (1.21)

This has a reduced density matrice




oL =Tir (p)
_ 4 1 122
=5 1) (T + 511 (1], (1.22)
=1 (]
This has a matrix representation
o1, = [(1) 8} . (1.23)

In this second example, we have more information about the left partition. That will be seen
as a zero enganglement entropy in the problem set. In contrast we have less information about
the first state, and will find a non-zero positive entanglement entropy in that case.
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