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PHY1520H Graduate Quantum Mechanics. Lecture 7: Aharonov-Bohm
effect and Landau levels. Taught by Prof. Arun Paramekanti

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof.

Paramekanti, covering ch. 1 [1] content.

problem set note. In the problem set we’ll look at interference patterns for two slit electron interfer-
ence like that of fig. 1.1, where a magnetic whisker that introduces flux is added to the configuration.

Figure 1.1: Two slit interference with magnetic whisker

Figure 1.2: Energy vs flux
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Aharonov-Bohm effect (cont.) Why do we have the zeros at integral multiples of h/q? Consider a
particle in a circular trajectory as sketched in fig. 1.3

Figure 1.3: Circular trajectory

FIXME: Prof mentioned:

(1.1)φloop = q
hp/q

h̄
= 2πp

... I’m not sure what that was about now.
In classical mechanics we have

(1.2)
∮

pdq

The integral zero points are related to such a loop, but the qA portion of the momentum p− qA
needs to be considered.

Superconductors After cooling some materials sufficiently, superconductivity, a complete lack of
resistance to electrical flow can be observed. A resistivity vs temperature plot of such a material is
sketched in fig. 1.4.

Figure 1.4: Superconductivity with comparison to superfluidity

Just like He4 can undergo Bose condensation, superconductivity can be explained by a hybrid
Bosonic state where electrons are paired into one state containing integral spin.

The Little-Parks experiment puts a superconducting ring around a magnetic whisker as sketched
in fig. 1.5.

This experiment shows that the effective charge of the circulating charge was 2e, validating the
concept of Cooper-pairing, the Bosonic combination (integral spin) of electrons in superconduction.
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Figure 1.5: Little-Parks superconducting ring

Motion around magnetic field

(1.3)ωc =
eB
m

We work with what is now called the Landau gauge

(1.4)A = (0, Bx, 0)

This gives

(1.5)
B = ∇ × A

=
(
∂x Ay − ∂y Ax

)
ẑ

= Bẑ.

An alternate gauge choice, the symmetric gauge, is

(1.6)A =
(
−By

2
,

Bx
2

, 0
)

,

that also has the same magnetic field

(1.7)

B = ∇A
=
(
∂x Ay − ∂y Ax

)
ẑ

=
(

B
2
−
(
−B

2

))
ẑ

= Bẑ.

We expect the physics for each to have the same results, although the wave functions in one gauge
may be more complicated than in the other.

Our Hamiltonian is

(1.8)
H =

1
2m

(p − eA)2

=
1

2m
p̂2

x +
1

2m
(

p̂y − eBx̂
)2

We can solve after noting that

(1.9)
[
p̂y, H

]
= 0
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means that

(1.10)Ψ(x, y) = eikyyφ(x)

The eigensystem

(1.11)Hψ(x, y) = Eφ(x, y),

becomes

(1.12)
(

1
2m

p̂2
x +

1
2m

(
h̄ky − eBx̂

)2
)

φ(x) = Eφ(x).

This reduced Hamiltonian can be rewritten as

(1.13)
Hx =

1
2m

p2
x +

1
2m

e2B2
(

x̂ −
h̄ky

eB

)2

≡ 1
2m

p2
x +

1
2

mω2 (x̂ − x0)2

where

(1.14)
1

2m
e2B2 =

1
2

mω2,

or

(1.15)ω =
eB
m

≡ ωc.

and

(1.16)x0 =
h̄
ky

eB.

But what is this x0? Because ky is not really specified in this problem, we can consider that we have
a zero point energy for every ky, but the oscillator position is shifted for every such value of ky. For
each set of energy levels fig. 1.6 we can consider that there is a different zero point energy for each
possible ky.

Figure 1.6: Energy levels, and Energy vs flux

This is an infinitely degenerate system with an infinite number of states for any given energy level.
This tells us that there is a problem, and have to reconsider the assumption that any ky is acceptable.
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Figure 1.7: Landau degeneracy region

To resolve this we can introduce periodic boundary conditions, imagining that a square is rotated
in space forming a cylinder as sketched in fig. 1.7.

Requiring quantized momentum

(1.17)kyLy = 2πn,

or

ky =
2πn
Ly

, n ∈ Z, (1.18)

gives

(1.19)x0(n) =
h̄

eB
2πn
Ly

,

with x0 ≤ Lx. The range is thus restricted to

(1.20)
h̄

eB
2πnmax

Ly
= Lx,

or

(1.21)nmax = LxLy︸︷︷︸
area

eB
2πh̄

That is

(1.22)
nmax =

Φtotal

h/e

=
Φtotal

Φ0
.

Attempting to measure Hall-effect systems, it was found that the Hall conductivity was quantized
like

(1.23)σxy = p
e2

h
.

This quantization is explained by these Landau levels, and this experimental apparatus provides
one of the more accurate ways to measure the fine structure constant.
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