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PHY1520H Graduate Quantum Mechanics. Lecture 9: Dirac equation
(cont.). Taught by Prof. Arun Paramekanti

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof.

Paramekanti.

Where we left off

(1.1)−ih̄
∂

∂t

[
ψ1
ψ2

]
=
[
−ih̄c ∂

∂x mc2

mc2 ih̄c ∂
∂x

]
.

With a potential this would be

(1.2)−ih̄
∂

∂t

[
ψ1
ψ2

]
=
[
−ih̄c ∂

∂x + V(x) mc2

mc2 ih̄c ∂
∂x + V(x)

]
.

This means that the potential is raising the energy eigenvalue of the system.

Free Particle Assuming a form

(1.3)
[

ψ1(x, t)
ψ2(x, t)

]
= eikx

[
f1(t)
f2(t)

]
,

and plugging back into the Dirac equation we have

(1.4)−ih̄
∂

∂t

[
f1
f2

]
=
[

kh̄c mc2

mc2 −h̄kc

] [
f1
f2

]
.

We can use a diagonalizing rotation

(1.5)
[

f1
f2

]
=
[

cos θk − sin θk
sin θk cos θk

] [
f+
f−

]
.

Plugging this in reduces the system to the form

(1.6)−ih̄
∂

∂t

[
f+
f−

]
=
[

Ek 0
0 −Ek

] [
f+
f−

]
.
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Where the rotation angle is found to be given by

(1.7)

sin(2θk) =
mc2√

(h̄kc)2 + m2c4

cos(2θk) =
h̄kc√

(h̄kc)2 + m2c4

Ek =
√

(h̄kc)2 + m2c4

See fig. 1.1 for a sketch of energy vs momentum. The asymptotes are the limiting cases when
mc2 → 0. The + branch is what we usually associate with particles. What about the other energy
states. For Fermions Dirac argued that the lower energy states could be thought of as “filled up”,
using the Pauli principle to leave only the positive energy states available. This was called the “Dirac
Sea”. This isn’t a good solution, and won’t work for example for Bosons.

Figure 1.1: Dirac equation solution space

Another way to rationalize this is to employ ideas from solid state theory. For example consider a
semiconductor with a valence and conduction band as sketched in fig. 1.2.

Figure 1.2: Solid state valence and conduction band transition

A photon can excite an electron from the valence band to the conduction band, leaving all the
valence band states filled except for one (a hole). For an electron we can use almost the same picture,
as sketched in fig. 1.3.
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Figure 1.3: Pair creation

A photon with energy Ek − (−Ek) can create a positron-electron pair from the vacuum, where the
energy of the electron and positron pair is Ek. At high enough energies, we can see this pair creation
occur.

Zitterbewegung If a particle is created at a non-eigenstate such as one on the asymptotes, then oscil-
lations between the positive and negative branches are possible as sketched in fig. 1.4.

Figure 1.4: Zitterbewegung oscillation

Only “vertical" oscillations between the positive and negative locations on these branches is pos-
sible since those are the points that match the particle momentum. Examining this will be the aim of
one of the problem set problems.

Probability and current density If we define a probability density

(1.8)ρ(x, t) = |ψ1|2 + |ψ2|2,

does this satisfy a probability conservation relation

(1.9)
∂ρ

∂t
+

∂j
∂x

= 0,

where j is the probability current. Plugging in the density, we have
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(1.10)
∂ρ

∂t
=

∂ψ∗1
∂t

ψ1 + ψ∗1
∂ψ1

∂t
+

∂ψ∗2
∂t

ψ2 + ψ∗2
∂ψ2

∂t
.

It turns out that the probability current has the form

(1.11)j(x, t) = c
(
ψ∗1 ψ1 + ψ∗2 ψ2

)
.

Here the speed of light c is the slope of the line in the plots above. We can think of this current
density as right movers minus the left movers. Any state that is given can be thought of as a com-
bination of right moving and left moving states, neither of which are eigenstates of the free particle
Hamiltonian.

Potential step The next logical thing to think about, as in non-relativistic quantum mechanics, is to
think about what occurs when the particle hits a potential step, as in fig. 1.5.

Figure 1.5: Reflection off a potential barrier

The approach is the same. We write down the wave functions for the V = 0 region (I), and the
higher potential region (II).

The eigenstates are found on the solid lines above the asymptotes on the right hand movers side
as sketched in fig. 1.6. The right and left moving designations are based on the phase velocity ∂E/∂k
(approaching ±c on the top-right and top-left quadrants respectively).

Figure 1.6: Right movers and left movers

For k > 0, an eigenstate for the incident wave is
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(1.12)ψinc(x) =
[

cos θk
sin θk

]
eikx,

For the reflected wave function, we pick a function on the left moving side of the positive energy
branch.

(1.13)ψref(x) =
[

?
?

]
e−ikx,

We’ll go through this in more detail next time.

Exercise 1 Calculate the right going diagonalization

Prove eq. (1.7).

Answer of exercise 1
To determine the relations for θk we have to solve

(1.14)
[

Ek 0
0 −Ek

]
= R−1HR.

Working with h̄ = c = 1 temporarily, and C = cos θk, S = sin θk, that is

(1.15)

[
Ek 0
0 −Ek

]
=
[

C S
−S C

] [
k m
m −k

] [
C −S
S C

]
=
[

C S
−S C

] [
kC + mS −kS + mC
mC − kS −mS − kC

]
=
[

kC2 + mSC + mCS − kS2 −kSC + mC2 − mS2 − kCS
−kCS − mS2 + mC2 − kSC kS2 − mCS − mSC − kC2

]
=
[

k cos(2θk) + m sin(2θk) m cos(2θk)− k sin(2θk)
m cos(2θk)− k sin(2θk) −k cos(2θk)− m sin(2θk)

]
.

This gives

(1.16)
Ek

[
1
0

]
=
[

k cos(2θk) + m sin(2θk)
m cos(2θk)− k sin(2θk)

]
=
[

k m
m −k

] [
cos(2θk)
sin(2θk)

]
.

Adding back in the h̄’s and c’s this is

(1.17)

[
cos(2θk)
sin(2θk)

]
=

Ek

−(h̄kc)2 − (mc2)2

[
−h̄kc −mc2

−mc2 h̄kc

] [
1
0

]
=

1
Ek

[
h̄kc
mc2

]
.
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Exercise 2 Verify the Dirac current relationship.

Prove eq. (1.11).

Answer of exercise 2
The components of the Schrödinger equation are

−ih̄
∂ψ1

∂t
= −ih̄c

∂ψ1

∂x
+ mc2ψ2

−ih̄
∂ψ2

∂t
= mc2ψ1 + ih̄c

∂ψ2

∂x
,

(1.18)

The conjugates of these are

ih̄
∂ψ∗1
∂t

= ih̄c
∂ψ∗1
∂x

+ mc2ψ∗2

ih̄
∂ψ∗2
∂t

= mc2ψ∗1 − ih̄c
∂ψ∗2
∂x

.
(1.19)

This gives

(1.20)

ih̄
∂ρ

∂t
=
(

ih̄c
∂ψ∗1
∂x

+ mc2ψ∗2

)
ψ1

+ ψ∗1

(
ih̄c

∂ψ1

∂x
− mc2ψ2

)
+
(

mc2ψ∗1 − ih̄c
∂ψ∗2
∂x

)
ψ2

+ ψ∗2

(
−mc2ψ1 − ih̄c

∂ψ2

∂x

)
.

All the non-derivative terms cancel leaving

(1.21)

1
c

∂ρ

∂t
=

∂ψ∗1
∂x

ψ1 + ψ∗1
∂ψ1

∂x
− ∂ψ∗2

∂x
ψ2 − ψ∗2

∂ψ2

∂x

=
∂

∂x
(
ψ∗1 ψ1 − ψ∗2 ψ2

)
.
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