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Resolving fields into components parallel to the reflecting plane

In order to apply the Fresnel equations, the field components have to be resolved into components
where either the electric field or the magnetic field is parallel to the plane of reflection. The geometry
of this, with the wave vector direction k̂ and the electric and magnetic field phasors perpendicular to
that direction is sketched in fig. 1.1.

Figure 1.1: Field components relative to reflecting plane

If the incident wave is a plane wave, or equivalently a far field spherical wave, it will have the
form

H =
1
µ0

k̂× E, (1.1)

with the field directions and wave vector directions satisfying

Ê× Ĥ = k̂ (1.2a)

Ê · k̂ = 0 (1.2b)

Ĥ · k̂ = 0. (1.2c)
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The key to resolving the fields into components parallel to the plane of reflection lies in the obser-
vation that the cross product of the plane normal n̂ and the incident wave vector direction k̂ lies in
that plane. With

p̂ =
k̂× n̂∣∣∣k̂× n̂

∣∣∣ (1.3a)

q̂ = k̂× p̂, (1.3b)

the field directions can be resolved into components

E = (E · p̂) p̂ + (E · q̂) q̂ = E‖p̂ + E⊥q̂ (1.4a)

H = (H · p̂) p̂ + (H · q̂) q̂ = H‖p̂ + H⊥q̂. (1.4b)

This subdivides the fields into two pairs, one with the electric field parallel to the reflection plane

E1 = (E · p̂) p̂ = E‖p̂

H1 = (H · q̂) q̂ = H⊥q̂,
(1.5)

and one with the magnetic field parallel to the reflection plane

H2 = (H · p̂) p̂ = H‖p̂

E2 = (E · q̂) q̂ = E⊥q̂.
(1.6)

This is most of what we need to proceed with the reflection and transmission analysis. The only
task remaining is to determine the reflection angle.

Using a pencil with the tip on the table I was able to convince myself by observation that there is
always a normal plane of incidence regardless of any oblique angle that the ray hits the reflecting
surface. This was, for some reason, not intuitively obvious to me. Having done that, the geometry
must be reduced to what is sketched in fig. 1.2.

Once a p̂′ = p̂ × n̂ has been determined, regardless of it’s orientation in the reflection plane, the
component of k̂ that is normal, directed towards, the plane of reflection is

k̂−
(

k̂ · p̂′
)

p̂′, (1.7)

with (squared) length

(1.8)

(
k̂ −

(
k̂ · p̂′

)
p̂′
)2

= 1 +
(

k̂ · p̂′
)2
− 2

(
k̂ · p̂′

)2

= 1−
(

k̂ · p̂′
)2

.

The angle of incidence, relative to the normal to the reflection plane, follows from
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Figure 1.2: Angle of incidence determination

(1.9)
cos θ = k̂ ·

k̂ −
(

k̂ · p̂′
)

p̂′√
1−

(
k̂ · p̂′

)2

=

√
1−

(
k̂ · p̂′

)2
.

Expanding the dot product above gives

(1.10)
k̂ · p̂′ = k̂ · (p̂ × n̂)

=
1∣∣∣k̂ × n̂
∣∣∣ k̂ ·

((
k̂ × n̂

)
× n̂

)
,

where

(1.11)

k̂ ·
((

k̂ × n̂
)
× n̂

)
= krεrst

(
k̂ × n̂

)
s

nt

= krεrstεsabkanbnt

= −krδ[ab]
rt kanbnt

= −krnt (krnt − ktnr)

= −1 +
(

k̂ · n̂
)2

.

That gives
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(1.12)
k̂ · p̂′ =

−1 +
(

k̂ · n̂
)2

√
1−

(
k̂ · n̂

)2

= −
√

1−
(

k̂ · n̂
)2

,

or

(1.13)
cos θ =

√√√√1−
(
−
√

1−
(

k̂ · n̂
)2
)2

=

√(
k̂ · n̂

)2

= k̂ · n̂.

This surprisingly simple result makes so much sense, it is an awful admission of stupidity that I
went through all the vector algebra to get it instead of just writing it down directly.

The end result is the reflection angle is given by

θ = cos−1 k̂ · n̂, (1.14)

where the reflection plane normal should off the back surface to get the sign right. The only detail
left is the vector direction of the reflected ray (as well as the direction for the transmitted ray if that
is of interest). The reflected ray direction flips the sign of the normal component of the ray

(1.15)

k̂′ = −
(

k̂ · n̂
)

n̂ +
(

k̂ ∧ n̂
)

n̂

= −
(

k̂ · n̂
)

n̂ + k̂ −
(

n̂k̂
)
· n̂

= k̂ − 2
(

k̂ · n̂
)

n̂.

Here the sign of the normal doesn’t matter since it only occurs quadratically.
This now supplies everything needed for the application of the Fresnel equations to determine the

reflected ray characteristics of an arbitrarily polarized incident field.
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