Peeter Joot
 peeter.joot@gmail.com

Constant magnetic solenoid field

In [2] the following vector potential

$$
\begin{equation*}
\mathbf{A}=\frac{B \rho_{a}^{2}}{2 \rho} \hat{\boldsymbol{\phi}}, \tag{1.1}
\end{equation*}
$$

is introduced in a discussion on the Aharonov-Bohm effect, for configurations where the interior field of a solenoid is either a constant \mathbf{B} or zero.

I wasn't able to make sense of this since the field I was calculating was zero for all $\rho \neq 0$

$$
\begin{align*}
\mathbf{B} & =\boldsymbol{\nabla} \times \mathbf{A} \\
& =\left(\hat{\boldsymbol{\rho}} \partial_{\rho}+\hat{\mathbf{z}} \partial_{z}+\frac{\hat{\boldsymbol{\phi}}}{\rho} \partial_{\phi}\right) \times \frac{B \rho_{a}^{2}}{2 \rho} \hat{\boldsymbol{\phi}} \\
& =\left(\hat{\boldsymbol{\rho}} \partial_{\rho}+\frac{\hat{\boldsymbol{\phi}}}{\rho} \partial_{\phi}\right) \times \frac{B \rho_{a}^{2}}{2 \rho} \hat{\boldsymbol{\phi}} \tag{1.2}\\
& =\frac{B \rho_{a}^{2}}{2} \hat{\boldsymbol{\rho}} \times \hat{\boldsymbol{\phi}} \partial_{\rho}\left(\frac{1}{\rho}\right)+\frac{B \rho_{a}^{2}}{2 \rho} \frac{\boldsymbol{\boldsymbol { \phi }}}{\rho} \times \partial_{\phi} \hat{\boldsymbol{\phi}} \\
& =\frac{B \rho_{a}^{2}}{2 \rho^{2}}\left(-\hat{\mathbf{z}}+\hat{\boldsymbol{\phi}} \times \partial_{\phi} \hat{\boldsymbol{\phi}}\right) .
\end{align*}
$$

Note that the ρ partial requires that $\rho \neq 0$. To expand the cross product in the second term let $j=\mathbf{e}_{1} \mathbf{e}_{2}$, and expand using a Geometric Algebra representation of the unit vector

$$
\begin{align*}
\hat{\boldsymbol{\phi}} \times \partial_{\phi} \hat{\boldsymbol{\phi}} & =\mathbf{e}_{2} e^{j \phi} \times\left(\mathbf{e}_{2} \mathbf{e}_{1} \mathbf{e}_{2} e^{j \phi}\right) \\
& =-\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3}\left\langle\mathbf{e}_{2} e^{j \phi}\left(-\mathbf{e}_{1}\right) e^{j \phi}\right\rangle \tag{1.3}\\
& =\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{2} \mathbf{e}_{1} \\
& =\mathbf{e}_{3} \\
& =\hat{\mathbf{z}} .
\end{align*}
$$

So, provided $\rho \neq 0, \mathbf{B}=0$.
The errata [1] provides the clarification, showing that a $\rho>\rho_{a}$ constraint is required for this potential to produce the desired results. Continuity at $\rho=\rho_{a}$ means that in the interior (or at least on the boundary) we must have one of

$$
\begin{equation*}
\mathbf{A}=\frac{B \rho_{a}}{2} \hat{\boldsymbol{\phi}} \tag{1.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{A}=\frac{B \rho}{2} \hat{\boldsymbol{\phi}} \tag{1.5}
\end{equation*}
$$

The first doesn't work, but the second does

$$
\begin{align*}
\mathbf{B} & =\boldsymbol{\nabla} \times \mathbf{A} \\
& =\left(\hat{\rho} \partial_{\rho}+\hat{\mathbf{z}} \partial_{z}+\frac{\hat{\boldsymbol{\phi}}}{\rho} \partial_{\phi}\right) \times \frac{B \rho}{2} \hat{\boldsymbol{\phi}} \tag{1.6}\\
& =\frac{B}{2} \hat{\boldsymbol{\rho}} \times \hat{\boldsymbol{\phi}}+\frac{B \rho}{2} \frac{\hat{\boldsymbol{\phi}}}{\rho} \times \partial_{\phi} \hat{\boldsymbol{\phi}} \\
& =B \hat{\mathbf{z}} .
\end{align*}
$$

So the vector potential that we want for a constant $B \hat{\mathbf{z}}$ field in the interior $\rho<\rho_{a}$ of a cylindrical space, we need

$$
\mathbf{A}= \begin{cases}\frac{B \rho_{a}^{2}}{2 \rho} \hat{\boldsymbol{\phi}} & \text { if } \rho \geq \rho_{a} \tag{1.7}\\ \frac{B \rho}{2} \hat{\boldsymbol{\phi}} & \text { if } \rho \leq \rho_{a}\end{cases}
$$

This potential is graphed in fig. 1.1.

Figure 1.1: Vector potential for constant field in cylindrical region.

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Errata: Typographical Errors, Mistakes, and Comments, Modern Quantum Mechanics, 2nd Edition, 2013. URL http://www.rpi.edu/dept/phys/Courses/ PHYS6520/Spring2015/ErrataMQM.pdf. 1
[2] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1

