Peeter Joot peeterjoot@protonmail.com

Some spin problems

Problems from angular momentum chapter of [1].

Q: S_y *eigenvectors* Find the eigenvectors of σ_y , and then find the probability that a measurement of S_y will be $\hbar/2$ when the state is initially

$$\begin{matrix} \alpha \\ \beta \end{matrix}$$
 (1.1)

A: The eigenvalues should be ± 1 , which is easily checked

$$0 = |\sigma_y - \lambda|$$

= $\begin{vmatrix} -\lambda & -i \\ i & -\lambda \end{vmatrix}$
= $\lambda^2 - 1.$ (1.2)

For $|+\rangle = (a, b)^{T}$ we must have

$$-1a - ib = 0,$$
 (1.3)

so

$$|+\rangle \propto \begin{bmatrix} -i\\1 \end{bmatrix},\tag{1.4}$$

or

$$|+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\i \end{bmatrix}. \tag{1.5}$$

For $|-\rangle$ we must have

$$a - ib = 0, \tag{1.6}$$

so

$$|+\rangle \propto \begin{bmatrix} i\\1 \end{bmatrix},\tag{1.7}$$

or

$$|+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -i \end{bmatrix}.$$
 (1.8)

The normalized eigenvectors are

$$|\pm\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ \pm i \end{bmatrix}. \tag{1.9}$$

For the probability question we are interested in

$$\left| \left\langle S_{y}; + \right| \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \right|^{2} = \frac{1}{2} \left| \begin{bmatrix} 1 & -i \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \right|^{2}$$
$$= \frac{1}{2} \left(|\alpha|^{2} + |\beta|^{2} \right)$$
$$= \frac{1}{2}.$$
 (1.10)

There is a 50% chance of finding the particle in the $|S_x; +\rangle$ state, independent of the initial state.

Q: Magnetic Hamiltonian eigenvectors Using Pauli matrices, find the eigenvectors for the magnetic spin interaction Hamiltonian

$$H = -\frac{1}{\hbar} 2\mu \mathbf{S} \cdot \mathbf{B}.$$
 (1.11)

A:

$$H = -\mu \boldsymbol{\sigma} \cdot \mathbf{B}$$

= $-\mu \left(B_x \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + B_y \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} + B_z \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right)$
= $-\mu \begin{bmatrix} B_z & B_x - iB_y \\ B_x + iB_y & -B_z \end{bmatrix}.$ (1.12)

The characteristic equation is

$$0 = \begin{vmatrix} -\mu B_z - \lambda & -\mu (B_x - iB_y) \\ -\mu (B_x + iB_y) & \mu B_z - \lambda \end{vmatrix}$$

= $-((\mu B_z)^2 - \lambda^2) - \mu^2 (B_x^2 - (iB_y)^2)$
= $\lambda^2 - \mu^2 \mathbf{B}^2.$ (1.13)

That is

$$\lambda = \pm \mu B. \tag{1.14}$$

Now for the eigenvectors. We are looking for $|\pm\rangle = (a, b)^{T}$ such that

$$0 = (-\mu B_z \mp \mu B)a - \mu (B_x - iB_y)b$$
(1.15)

or

$$|\pm\rangle \propto \begin{bmatrix} B_x - iB_y \\ B_z \pm B \end{bmatrix}.$$
 (1.16)

This squares to

$$B_x^2 + B_y^2 + B_z^2 + B^2 \pm 2BB_z = 2B(B \pm B_z), \qquad (1.17)$$

so the normalized eigenkets are

$$|\pm\rangle = \frac{1}{\sqrt{2B(B\pm B_z)}} \begin{bmatrix} B_x - iB_y \\ B_z \pm B \end{bmatrix}.$$
 (1.18)

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1