## Some spin problems

Problems from angular momentum chapter of [1].
Q: $S_{y}$ eigenvectors Find the eigenvectors of $\sigma_{y}$, and then find the probability that a measurement of $S_{y}$ will be $\hbar / 2$ when the state is initially

$$
\left[\begin{array}{l}
\alpha  \tag{1.1}\\
\beta
\end{array}\right]
$$

A: The eigenvalues should be $\pm 1$, which is easily checked

$$
\begin{align*}
0 & =\left|\sigma_{y}-\lambda\right| \\
& =\left|\begin{array}{cc}
-\lambda & -i \\
i & -\lambda
\end{array}\right|  \tag{1.2}\\
& =\lambda^{2}-1 .
\end{align*}
$$

For $|+\rangle=(a, b)^{\mathrm{T}}$ we must have

$$
\begin{equation*}
-1 a-i b=0, \tag{1.3}
\end{equation*}
$$

so
or

For $|-\rangle$ we must have

$$
\begin{equation*}
a-i b=0, \tag{1.6}
\end{equation*}
$$

so
or

The normalized eigenvectors are

For the probability question we are interested in

$$
\begin{align*}
\left\lvert\,\left.\left\langle S_{y} ;+\right|\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\right|^{2}\right. & =\frac{1}{2}\left|\left[\begin{array}{ll}
1 & -i
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\right|^{2} \\
& =\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}\right)  \tag{1.10}\\
& =\frac{1}{2} .
\end{align*}
$$

There is a $50 \%$ chance of finding the particle in the $\left|S_{x} ;+\right\rangle$ state, independent of the initial state.
Q: Magnetic Hamiltonian eigenvectors Using Pauli matrices, find the eigenvectors for the magnetic spin interaction Hamiltonian

$$
\begin{equation*}
H=-\frac{1}{\hbar} 2 \mu \mathbf{S} \cdot \mathbf{B} . \tag{1.11}
\end{equation*}
$$

A:

$$
\begin{align*}
H & =-\mu \sigma \cdot \mathbf{B} \\
& =-\mu\left(B_{x}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+B_{y}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]+B_{z}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\right)  \tag{1.12}\\
& =-\mu\left[\begin{array}{cc}
B_{z} & B_{x}-i B_{y} \\
B_{x}+i B_{y} & -B_{z}
\end{array}\right] .
\end{align*}
$$

The characteristic equation is

$$
\begin{align*}
0 & =\left|\begin{array}{cc}
-\mu B_{z}-\lambda & -\mu\left(B_{x}-i B_{y}\right) \\
-\mu\left(B_{x}+i B_{y}\right) & \mu B_{z}-\lambda
\end{array}\right| \\
& =-\left(\left(\mu B_{z}\right)^{2}-\lambda^{2}\right)-\mu^{2}\left(B_{x}^{2}-\left(i B_{y}\right)^{2}\right)  \tag{1.13}\\
& =\lambda^{2}-\mu^{2} \mathbf{B}^{2} .
\end{align*}
$$

That is

$$
\begin{equation*}
\lambda= \pm \mu B . \tag{1.14}
\end{equation*}
$$

Now for the eigenvectors. We are looking for $| \pm\rangle=(a, b)^{\mathrm{T}}$ such that

$$
\begin{equation*}
0=\left(-\mu B_{z} \mp \mu B\right) a-\mu\left(B_{x}-i B_{y}\right) b \tag{1.15}
\end{equation*}
$$

or

This squares to

$$
\begin{equation*}
B_{x}^{2}+B_{y}^{2}+B_{z}^{2}+B^{2} \pm 2 B B_{z}=2 B\left(B \pm B_{z}\right) \tag{1.17}
\end{equation*}
$$

so the normalized eigenkets are

## Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1

