Peeter Joot
 peeterjoot@protonmail.com

Time evolution of spin half probability and dispersion

Exercise 1.1 Time evolution of spin half probability and dispersion ([1] pr. 2.3)

A spin $1 / 2$ system $\mathbf{S} \cdot \hat{\mathbf{n}}$, with $\hat{\mathbf{n}}=\sin \beta \hat{\mathbf{x}}+\cos \beta \hat{\mathbf{z}}$, is in state with eigenvalue $\hbar / 2$, acted on by a magnetic field of strength B in the $+z$ direction.

1. If S_{x} is measured at time t, what is the probability of getting $+\hbar / 2$?
2. Evaluate the dispersion in S_{x} as a function of t, that is,

$$
\begin{equation*}
\left\langle\left(S_{x}-\left\langle S_{x}\right\rangle\right)^{2}\right\rangle . \tag{1.1}
\end{equation*}
$$

3. Check your answers for $\beta \rightarrow 0, \pi / 2$ to see if they make sense.

Answer for Exercise 1.1

Part 1. The spin operator in matrix form is

$$
\begin{align*}
S \cdot \hat{\mathbf{n}} & =\frac{\hbar}{2}\left(\sigma_{z} \cos \beta+\sigma_{x} \sin \beta\right) \\
& =\frac{\hbar}{2}\left(\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \cos \beta+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \sin \beta\right) \tag{1.2}\\
& =\frac{\hbar}{2}\left[\begin{array}{cc}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array}\right] .
\end{align*}
$$

The $|S \cdot \hat{\mathbf{n}} ;+\rangle$ eigenstate is found from

$$
(S \cdot \hat{\mathbf{n}}-\hbar / 2)\left[\begin{array}{l}
a \tag{1.3}\\
b
\end{array}\right]=0
$$

or

$$
\begin{align*}
0 & =(\cos \beta-1) a+\sin \beta b \\
& =\left(-2 \sin ^{2}(\beta / 2)\right) a+2 \sin (\beta / 2) \cos (\beta / 2) b \\
& =(-\sin (\beta / 2)) a+\cos (\beta / 2) b, \tag{1.4}
\end{align*}
$$

or

$$
|S \cdot \hat{\mathbf{n}} ;+\rangle=\left[\begin{array}{c}
\cos (\beta / 2) \tag{1.5}\\
\sin (\beta / 2)
\end{array}\right] .
$$

The Hamiltonian is

$$
\begin{equation*}
H=-\frac{e B}{m c} S_{z}=-\frac{e B \hbar}{2 m c} \sigma_{z}, \tag{1.6}
\end{equation*}
$$

so the time evolution operator is

$$
\begin{align*}
U & =e^{-i H t / / \hbar} \tag{1.7}\\
& =e^{\frac{i e b t}{2 m c} \sigma_{z}} .
\end{align*}
$$

Let $\omega=e B /(2 m c)$, so

$$
\begin{align*}
U & =e^{i \sigma_{z} \omega t} \\
& =\cos (\omega t)+i \sigma_{z} \sin (\omega t) \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cos (\omega t)+i\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \sin (\omega t) \tag{1.8}\\
& =\left[\begin{array}{cc}
e^{i \omega t} & 0 \\
0 & e^{-i \omega t}
\end{array}\right] .
\end{align*}
$$

The time evolution of the initial state is

$$
\begin{align*}
|S \cdot \hat{\mathbf{n}} ;+\rangle(t) & =U|S \cdot \hat{\mathbf{n}} ;+\rangle(0) \\
& =\left[\begin{array}{cc}
e^{i \omega t} & 0 \\
0 & e^{-i \omega t}
\end{array}\right]\left[\begin{array}{c}
\cos (\beta / 2) \\
\sin (\beta / 2)
\end{array}\right] \tag{1.9}\\
& =\left[\begin{array}{c}
\cos (\beta / 2) e^{i \omega t} \\
\sin (\beta / 2) e^{-i \omega t}
\end{array}\right] .
\end{align*}
$$

The probability of finding the state in $|S \cdot \hat{\mathbf{x}} ;+\rangle$ at time t (i.e. measuring S_{x} and finding $\hbar / 2$) is

$$
\begin{align*}
|\langle S \cdot \hat{\mathbf{x}} ;+\mid S \cdot \hat{\mathbf{n}} ;+\rangle|^{2} & =\left|\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{c}
\cos (\beta / 2) e^{i \omega t} \\
\sin (\beta / 2) e^{-i \omega t}
\end{array}\right]\right|^{2} \\
& =\frac{1}{2}\left|\cos (\beta / 2) e^{i \omega t}+\sin (\beta / 2) e^{-i \omega t}\right|^{2} \tag{1.10}\\
& =\frac{1}{2}(1+2 \cos (\beta / 2) \sin (\beta / 2) \cos (2 \omega t)) \\
& =\frac{1}{2}(1+\sin (\beta) \cos (2 \omega t)) .
\end{align*}
$$

Part 2. To calculate the dispersion first note that

$$
\begin{align*}
S_{x}^{2} & =\left(\frac{\hbar}{2}\right)^{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] 2 \tag{1.11}\\
& =\left(\frac{\hbar}{2}\right)^{2},
\end{align*}
$$

so only the first order expectation is non-trivial to calculate. That is

$$
\begin{align*}
\left\langle S_{x}\right\rangle & =\frac{\hbar}{2}\left[\begin{array}{ll}
\cos (\beta / 2) e^{-i \omega t} & \sin (\beta / 2) e^{i \omega t}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\cos (\beta / 2) e^{i \omega t} \\
\sin (\beta / 2) e^{-i \omega t}
\end{array}\right] \\
& =\frac{\hbar}{2}\left[\begin{array}{ll}
\cos (\beta / 2) e^{-i \omega t} & \sin (\beta / 2) e^{i \omega t}
\end{array}\right]\left[\begin{array}{c}
\sin (\beta / 2) e^{-i \omega t} \\
\cos (\beta / 2) e^{i \omega t}
\end{array}\right] \tag{1.12}\\
& =\frac{\hbar}{2} \sin (\beta / 2) \cos (\beta / 2)\left(e^{-2 i \omega t}+e^{2 i \omega t}\right) \\
& =\frac{\hbar}{2} \sin \beta \cos (2 \omega t) .
\end{align*}
$$

This gives

$$
\begin{equation*}
\left\langle\left(\Delta S_{x}\right)^{2}\right\rangle=\left(\frac{\hbar}{2}\right)^{2}\left(1-\sin ^{2} \beta \cos ^{2}(2 \omega t)\right) \tag{1.13}
\end{equation*}
$$

Part 3. For $\beta=0, \hat{\mathbf{n}}=\hat{\mathbf{z}}$, and $\beta=\pi / 2, \hat{\mathbf{n}}=\hat{\mathbf{x}}$. For the first case, the state is in an eigenstate of S_{z}, so must evolve as

$$
\begin{equation*}
|S \cdot \hat{\mathbf{n}} ;+\rangle(t)=|S \cdot \hat{\mathbf{n}} ;+\rangle(0) e^{i \omega t} \tag{1.14}
\end{equation*}
$$

The probability of finding it in state $\langle S \cdot \hat{\mathbf{x}} ;+\rangle$ is therefore

$$
\begin{align*}
& \left|\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{c}
e^{i \omega t} \\
0
\end{array}\right]\right|^{2} \\
& \quad=\frac{1}{2}\left|e^{i \omega t}\right|^{2} \tag{1.15}\\
& =\frac{1}{2} \\
& =\frac{1}{2}(1+\sin (0) \cos (2 \omega t)) .
\end{align*}
$$

This matches eq. (1.10) as expected.
For $\beta=\pi / 2$ we have

$$
\begin{align*}
|S \cdot \hat{\mathbf{x}} ;+\rangle(t) & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
e^{i \omega t} & 0 \\
0 & e^{-i \omega t}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \tag{1.16}\\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{c}
e^{i \omega t} \\
e^{-i \omega t}
\end{array}\right]
\end{align*}
$$

The probability for the $\hbar / 2 S_{x}$ measurement at time t is

$$
\begin{align*}
\left|\frac{1}{2}\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{c}
e^{i \omega t} \\
e^{-i \omega t}
\end{array}\right]\right|^{2} & =\frac{1}{4}\left|e^{i \omega t}+e^{-i \omega t}\right|^{2} \\
& =\cos ^{2}(\omega t) \tag{1.17}\\
& =\frac{1}{2}(1+\sin (\pi / 2) \cos (2 \omega t))
\end{align*}
$$

Again, this matches the expected value.
For the dispersions, at $\beta=0$, the dispersion is

$$
\begin{equation*}
\left(\frac{\hbar}{2}\right)^{2} \tag{1.18}
\end{equation*}
$$

This is the maximum dispersion, which makes sense since we are measuring S_{x} when the initial state is $|S \cdot \hat{\mathbf{z}} ;+\rangle$. For $\beta=\pi / 2$ the dispersion is

$$
\begin{equation*}
\left(\frac{\hbar}{2}\right)^{2} \sin ^{2}(2 \omega t) \tag{1.19}
\end{equation*}
$$

This starts off as zero dispersion (because the initial state is $|S \cdot \hat{\mathbf{x}} ;+\rangle$, but then oscillates.

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1.1

