A symmetric real Hamiltonian

Exercise 1.1 A symmetric real Hamiltonian ([1] pr. 2.9)

Find the time evolution for the state $\left|a^{\prime}\right\rangle$ for a Hamiltian of the form

$$
\begin{equation*}
H=\delta\left(\left|a^{\prime}\right\rangle\left\langle a^{\prime}\right|+\left|a^{\prime \prime}\right\rangle\left\langle a^{\prime \prime}\right|\right) \tag{1.1}
\end{equation*}
$$

Answer for Exercise 1.1

This Hamiltonian has the matrix representation

$$
H=\left[\begin{array}{ll}
0 & \delta \tag{1.2}\\
\delta & 0
\end{array}\right],
$$

which has a characteristic equation of

$$
\begin{equation*}
\lambda^{2}-\delta^{2}=0, \tag{1.3}
\end{equation*}
$$

so the energy eigenvalues are $\pm \delta$.
The diagonal basis states are respectively

$$
| \pm \delta\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\pm 1 \tag{1.4}\\
1
\end{array}\right] .
$$

The time evolution operator is

$$
\begin{align*}
U & =e^{-i H t / \hbar} \\
& =e^{-i \delta t / \hbar}|+\delta\rangle\langle+\delta|+e^{i \delta t / \hbar}|-\delta\rangle\langle-\delta| \\
& =\frac{e^{-i \delta t / \hbar}}{2}\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{e^{i \delta t / \hbar}}{2}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \tag{1.5}\\
& =\frac{e^{-i \delta t / \hbar}}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+\frac{e^{i \delta t / \hbar}}{2}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (\delta t / \hbar) & -i \sin (\delta t / \hbar) \\
-i \sin (\delta t / \hbar) & \cos (\delta t / \hbar)
\end{array}\right] .
\end{align*}
$$

The desired time evolution in the original basis is

$$
\begin{align*}
\left|a^{\prime}, t\right\rangle & =e^{-i H t / \hbar\left|a^{\prime}, 0\right\rangle} \\
& =\left[\begin{array}{cc}
\cos (\delta t / \hbar) & -i \sin (\delta t / \hbar) \\
-i \sin (\delta t / \hbar) & \cos (\delta t / \hbar)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \tag{1.6}\\
& =\left[\begin{array}{c}
\cos (\delta t / \hbar) \\
-i \sin (\delta t / \hbar)
\end{array}\right] \\
& =\cos (\delta t / \hbar)\left|a^{\prime}, 0\right\rangle-i \sin (\delta t / \hbar)\left|a^{\prime \prime}, 0\right\rangle .
\end{align*}
$$

This evolution has the same structure as left circularly polarized light.
The probability of finding the system in state $\left|a^{\prime \prime}\right\rangle$ given an initial state of $\left|a^{\prime}, 0\right\rangle$ is

$$
\begin{align*}
P & =\left|\left\langle a^{\prime \prime} \mid a^{\prime}, t\right\rangle\right|^{2} \tag{1.7}\\
& =\sin ^{2}(\delta t / \hbar) .
\end{align*}
$$

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1.1

