Expectation of spherically symmetric 3D potential derivative

Exercise 1.1 Expectation of spherically symmetric 3D potential derivative. ([1] pr. 5.16)

1. For a particle in a spherically symmetric potential $V(r)$ show that

$$
\begin{equation*}
|\psi(0)|^{2}=\frac{m}{2 \pi \hbar^{2}}\left\langle\frac{d V}{d r}\right\rangle, \tag{1.1}
\end{equation*}
$$

for all s-states, ground or excited.
2. Show this is the case for the 3D SHO and hydrogen wave functions.

Answer for Exercise 1.1

Part 1. The text works a problem that looks similar to this by considering the commutator of an operator A, later set to $A=p_{r}=-i \hbar \partial / \partial r$ the radial momentum operator. First it is noted that

$$
\begin{equation*}
0=\langle n l m|[H, A]|n l m\rangle, \tag{1.2}
\end{equation*}
$$

since H operating to either the right or the left is the energy eigenvalue E_{n}. Next it appears the author uses an angular momentum factoring of the squared momentum operator. Looking earlier in the text that factoring is found to be

$$
\begin{equation*}
\frac{\mathbf{p}^{2}}{2 m}=\frac{1}{2 m r^{2}} \mathbf{L}^{2}-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right) . \tag{1.3}
\end{equation*}
$$

With

$$
\begin{equation*}
R=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right) . \tag{1.4}
\end{equation*}
$$

we have

$$
\begin{align*}
0 & =\langle n l m|\left[H, p_{r}\right]|n l m\rangle \\
& =\langle n l m|\left[\frac{\mathbf{p}^{2}}{2 m}+V(r), p_{r}\right]|n l m\rangle \\
& =\langle n l m|\left[\frac{1}{2 m r^{2}} \mathbf{L}^{2}+R+V(r), p_{r}\right]|n l m\rangle \tag{1.5}\\
& =\langle n l m|\left[\frac{-\hbar^{2} l(l+1)}{2 m r^{2}}+R+V(r), p_{r}\right]|n l m\rangle .
\end{align*}
$$

Let's consider the commutator of each term separately. First

$$
\begin{align*}
{\left[V, p_{r}\right] \psi } & =V p_{r} \psi-p_{r} V \psi \\
& =V p_{r} \psi-\left(p_{r} V\right) \psi-V p_{r} \psi \\
& =-\left(p_{r} V\right) \psi \tag{1.6}\\
& =i \hbar \frac{\partial V}{\partial r} \psi .
\end{align*}
$$

Setting $V(r)=1 / r^{2}$, we also have

$$
\begin{equation*}
\left[\frac{1}{r^{2}}, p_{r}\right] \psi=-\frac{2 i \hbar}{r^{3}} \psi . \tag{1.7}
\end{equation*}
$$

Finally

$$
\begin{align*}
{\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}, \frac{\partial}{\partial r}\right] } & =\left(\partial_{r r}+\frac{2}{r} \partial_{r}\right) \partial_{r}-\partial_{r}\left(\partial_{r r}+\frac{2}{r} \partial_{r}\right) \\
& =\partial_{r r r}+\frac{2}{r} \partial_{r r}-\left(\partial_{r r r}-\frac{2}{r^{2}} \partial_{r}+\frac{2}{r} \partial_{r r}\right) \\
& =-\frac{2}{r^{2}} \partial_{r}, \tag{1.8}
\end{align*}
$$

so

$$
\begin{align*}
{\left[R, p_{r}\right] } & =-\frac{2}{r^{2}}-\frac{\hbar^{2}}{2 m} p_{r} \tag{1.9}\\
& =\frac{\hbar^{2}}{m r^{2}} p_{r} .
\end{align*}
$$

Putting all the pieces back together, we've got

$$
\begin{align*}
0 & =\langle n l m|\left[\frac{-\hbar^{2} l(l+1)}{2 m r^{2}}+R+V(r), p_{r}\right]|n l m\rangle \tag{1.10}\\
& =i \hbar\langle n l m|\left(\frac{\hbar^{2} l(l+1)}{m r^{3}}-\frac{i \hbar}{m r^{2}} p_{r}+\frac{\partial V}{\partial r}\right)|n l m\rangle .
\end{align*}
$$

Since s-states are those for which $l=0$, this means

$$
\begin{align*}
\left\langle\frac{\partial V}{\partial r}\right\rangle & =\frac{i \hbar}{m}\left\langle\frac{1}{r^{2}} p_{r}\right\rangle \\
& =\frac{\hbar^{2}}{m}\left\langle\frac{1}{r^{2}} \frac{\partial}{\partial r}\right\rangle \tag{1.11}\\
& =\frac{\hbar^{2}}{m} \int_{0}^{\infty} d r \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi r^{2} \sin \theta \psi^{*}(r, \theta, \phi) \frac{1}{r^{2}} \frac{\partial \psi(r, \theta, \phi)}{\partial r} .
\end{align*}
$$

Since s-states are spherically symmetric, this is

$$
\begin{equation*}
\left\langle\frac{\partial V}{\partial r}\right\rangle=\frac{4 \pi \hbar^{2}}{m} \int_{0}^{\infty} d r \psi^{*} \frac{\partial \psi}{\partial r} \tag{1.12}
\end{equation*}
$$

That integral is

$$
\begin{equation*}
\int_{0}^{\infty} d r \psi^{*} \frac{\partial \psi}{\partial r}=\left.|\psi|^{2}\right|_{0} ^{\infty}-\int_{0}^{\infty} d r \frac{\partial \psi^{*}}{\partial r} \psi \tag{1.13}
\end{equation*}
$$

With the hydrogen atom, our radial wave functions are real valued. It's reasonable to assume that we can do the same for other real-valued spherical potentials. If that is the case, we have

$$
\begin{equation*}
2 \int_{0}^{\infty} d r \psi^{*} \frac{\partial \psi}{\partial r}=|\psi(0)|^{2} \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\frac{\partial V}{\partial r}\right\rangle=\frac{2 \pi \hbar^{2}}{m}|\psi(0)|^{2} \tag{1.15}
\end{equation*}
$$

which completes this part of the problem.

Part 2. For a hydrogen like atom, in atomic units, we have

$$
\begin{align*}
\left\langle\frac{\partial V}{\partial r}\right\rangle & =\left\langle\frac{\partial}{\partial r}\left(-\frac{Z e^{2}}{r}\right)\right\rangle \\
& =Z e^{2}\left\langle\frac{1}{r^{2}}\right\rangle \\
& =Z e^{2} \frac{Z^{2}}{n^{3} a_{0}^{2}(l+1 / 2)} \tag{1.16}\\
& =\frac{\hbar^{2}}{m a_{0}} \frac{2 Z^{3}}{n^{3} a_{0}^{2}} \\
& =\frac{2 \hbar^{2} Z^{3}}{m n^{3} a_{0}^{3}}
\end{align*}
$$

On the other hand for $n=1$, we have

$$
\begin{align*}
\frac{2 \pi \hbar^{2}}{m}\left|R_{10}(0)\right|^{2}\left|Y_{00}\right|^{2} & =\frac{2 \pi \hbar^{2}}{m} \frac{Z^{3}}{a_{0}^{3}} 4 \frac{1}{4 \pi} \tag{1.17}\\
& =\frac{2 \hbar^{2} Z^{3}}{m a_{0}^{3}}
\end{align*}
$$

and for $n=2$, we have

$$
\begin{align*}
\frac{2 \pi \hbar^{2}}{m}\left|R_{20}(0)\right|^{2}\left|Y_{00}\right|^{2} & =\frac{2 \pi \hbar^{2}}{m} \frac{Z^{3}}{8 a_{0}^{3}} 4 \frac{1}{4 \pi} \tag{1.18}\\
& =\frac{\hbar^{2} Z^{3}}{4 m a_{0}^{3}}
\end{align*}
$$

These both match the potential derivative expectation when evaluated for the s-orbital $(l=0)$.
For the 3D SHO I verified the ground state case in the Mathematica notebook sakuraiProblem5.16bSHO.nb There it was found that

$$
\begin{align*}
\left\langle\frac{\partial V}{\partial r}\right\rangle & =\frac{2 \pi \hbar^{2}}{m}|\psi(0)|^{2} \tag{1.19}\\
& =2 \sqrt{\frac{m \omega^{3} \hbar}{\pi}}
\end{align*}
$$

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1.1

