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Expectation of spherically symmetric 3D potential derivative

Exercise 1.1 Expectation of spherically symmetric 3D potential derivative. ([1] pr. 5.16)
1. For a particle in a spherically symmetric potential V(r) show that

(1.1)|ψ(0)|2 =
m

2πh̄2

〈
dV
dr

〉
,

for all s-states, ground or excited.
2. Show this is the case for the 3D SHO and hydrogen wave functions.

Answer for Exercise 1.1

Part 1. The text works a problem that looks similar to this by considering the commutator of an
operator A, later set to A = pr = −ih̄∂/∂r the radial momentum operator. First it is noted that

(1.2)0 = 〈nlm| [H, A] |nlm〉 ,

since H operating to either the right or the left is the energy eigenvalue En. Next it appears the
author uses an angular momentum factoring of the squared momentum operator. Looking earlier in
the text that factoring is found to be

(1.3)
p2

2m
=

1
2mr2 L2 − h̄2

2m

(
∂2

∂r2 +
2
r

∂

∂r

)
.

With

(1.4)R = − h̄2

2m

(
∂2

∂r2 +
2
r

∂

∂r

)
.

we have

(1.5)

0 = 〈nlm|
[
H, pr

]
|nlm〉

= 〈nlm|
[

p2

2m
+ V(r), pr

]
|nlm〉

= 〈nlm|
[

1
2mr2 L2 + R + V(r), pr

]
|nlm〉

= 〈nlm|
[
−h̄2l(l + 1)

2mr2 + R + V(r), pr

]
|nlm〉 .
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Let’s consider the commutator of each term separately. First

(1.6)

[
V, pr

]
ψ = Vprψ − prVψ

= Vprψ − (prV)ψ − Vprψ

= −(prV)ψ

= ih̄
∂V
∂r

ψ.

Setting V(r) = 1/r2, we also have

(1.7)
[

1
r2 , pr

]
ψ = −2ih̄

r3 ψ.

Finally

(1.8)

[
∂2

∂r2 +
2
r

∂

∂r
,

∂

∂r

]
=
(

∂rr +
2
r

∂r

)
∂r − ∂r

(
∂rr +

2
r

∂r

)
= ∂rrr +

2
r

∂rr −
(

∂rrr −
2
r2 ∂r +

2
r

∂rr

)
= − 2

r2 ∂r,

so

(1.9)

[
R, pr

]
= − 2

r2
−h̄2

2m
pr

=
h̄2

mr2 pr.

Putting all the pieces back together, we’ve got

(1.10)
0 = 〈nlm|

[
−h̄2l(l + 1)

2mr2 + R + V(r), pr

]
|nlm〉

= ih̄ 〈nlm|
(

h̄2l(l + 1)
mr3 − ih̄

mr2 pr +
∂V
∂r

)
|nlm〉 .

Since s-states are those for which l = 0, this means

(1.11)

〈
∂V
∂r

〉
=

ih̄
m

〈
1
r2 pr

〉
=

h̄2

m

〈
1
r2

∂

∂r

〉
=

h̄2

m

∫ ∞

0
dr
∫ π

0
dθ
∫ 2π

0
dφr2 sin θψ∗(r, θ, φ)

1
r2

∂ψ(r, θ, φ)
∂r

.
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Since s-states are spherically symmetric, this is

(1.12)
〈

∂V
∂r

〉
=

4πh̄2

m

∫ ∞

0
drψ∗

∂ψ

∂r
.

That integral is

(1.13)
∫ ∞

0
drψ∗

∂ψ

∂r
= |ψ|2

∣∣∣∞
0
−
∫ ∞

0
dr

∂ψ∗

∂r
ψ.

With the hydrogen atom, our radial wave functions are real valued. It’s reasonable to assume that
we can do the same for other real-valued spherical potentials. If that is the case, we have

(1.14)2
∫ ∞

0
drψ∗

∂ψ

∂r
= |ψ(0)|2,

and 〈
∂V
∂r

〉
=

2πh̄2

m
|ψ(0)|2, (1.15)

which completes this part of the problem.

Part 2. For a hydrogen like atom, in atomic units, we have

(1.16)

〈
∂V
∂r

〉
=
〈

∂

∂r

(
−Ze2

r

)〉
= Ze2

〈
1
r2

〉
= Ze2 Z2

n3a2
0

(
l + 1/2

) .

=
h̄2

ma0

2Z3

n3a2
0

=
2h̄2Z3

mn3a3
0

.

On the other hand for n = 1, we have

(1.17)

2πh̄2

m
|R10(0)|2|Y00|2 =

2πh̄2

m
Z3

a3
0

4
1

4π

=
2h̄2Z3

ma3
0

,

and for n = 2, we have
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(1.18)

2πh̄2

m
|R20(0)|2|Y00|2 =

2πh̄2

m
Z3

8a3
0

4
1

4π

=
h̄2Z3

4ma3
0

.

These both match the potential derivative expectation when evaluated for the s-orbital (l = 0).
For the 3D SHO I verified the ground state case in the Mathematica notebook sakuraiProblem5.16bSHO.nb
There it was found that

(1.19)

〈
∂V
∂r

〉
=

2πh̄2

m
|ψ(0)|2

= 2

√
mω3h̄

π
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