## Peeter Joot <br> peeterjoot@protonmail.com

## Commutators for some symmetry operators

Q: [1] pr 4.2 If $\mathcal{T}_{\mathbf{d}}, \mathcal{D}(\hat{\mathbf{n}}, \phi)$, and $\pi$ denote the translation, rotation, and parity operators respectively. Which of the following commute and why
(a) $\mathcal{T}_{\mathbf{d}}$ and $\mathcal{T}_{\mathbf{d}^{\prime}}$, translations in different directions.
(b) $\mathcal{D}(\hat{\mathbf{n}}, \phi)$ and $\mathcal{D}\left(\hat{\mathbf{n}}^{\prime}, \phi^{\prime}\right)$, rotations in different directions.
(c) $\mathcal{T}_{\mathrm{d}}$ and $\pi$.
(d) $\mathcal{D}(\hat{\mathbf{n}}, \phi$ and $\pi$.

A: (a) Consider

$$
\begin{align*}
\mathcal{T}_{\mathbf{d}} \mathcal{T}_{\mathbf{d}^{\prime}}|\mathbf{x}\rangle & =\mathcal{T}_{\mathbf{d}}\left|\mathbf{x}+\mathbf{d}^{\prime}\right\rangle  \tag{1.1}\\
& =\left|\mathbf{x}+\mathbf{d}^{\prime}+\mathbf{d}\right\rangle,
\end{align*}
$$

and the reverse application of the translation operators

$$
\begin{align*}
\mathcal{T}_{\mathbf{d}^{\prime}} \mathcal{T}_{\mathbf{d}}|\mathbf{x}\rangle & =\mathcal{T}_{\mathbf{d}^{\prime}}|\mathbf{x}+\mathbf{d}\rangle \\
& =\left|\mathbf{x}+\mathbf{d}+\mathbf{d}^{\prime}\right\rangle  \tag{1.2}\\
& =\left|\mathbf{x}+\mathbf{d}^{\prime}+\mathbf{d}\right\rangle .
\end{align*}
$$

so we see that

$$
\begin{equation*}
\left[\mathcal{T}_{\mathrm{d}}, \mathcal{T}_{\mathbf{d}^{\prime}}\right]|\mathbf{x}\rangle=0, \tag{1.3}
\end{equation*}
$$

for any position state $|\mathbf{x}\rangle$, and therefore in general they commute.
A: (b) That rotations do not commute when they are in different directions (like any two orthogonal directions) need not be belaboured.

A: (c) We have

$$
\begin{align*}
\mathcal{T}_{\mathbf{d}} \pi|\mathbf{x}\rangle & =\mathcal{T}_{\mathbf{d}}|-\mathbf{x}\rangle  \tag{1.4}\\
& =|-\mathbf{x}+\mathbf{d}\rangle,
\end{align*}
$$

yet

$$
\begin{align*}
\pi \mathcal{T}_{\mathbf{d}}|\mathbf{x}\rangle & =\pi|\mathbf{x}+\mathbf{d}\rangle \\
& =|-\mathbf{x}-\mathbf{d}\rangle  \tag{1.5}\\
& \neq|-\mathbf{x}+\mathbf{d}\rangle .
\end{align*}
$$

so, in general $\left[\mathcal{T}_{\mathrm{d}}, \pi\right] \neq 0$.
A: (d) We have

$$
\begin{align*}
\pi \mathcal{D}(\hat{\mathbf{n}}, \phi)|\mathbf{x}\rangle & =\pi \mathcal{D}(\hat{\mathbf{n}}, \phi) \pi^{\dagger} \pi|\mathbf{x}\rangle \\
& =\pi \mathcal{D}(\hat{\mathbf{n}}, \phi) \pi^{\dagger} \pi|\mathbf{x}\rangle \\
& =\pi\left(\sum_{k=0}^{\infty} \frac{(-i \mathbf{J} \cdot \hat{\mathbf{n}})^{k}}{k!}\right) \pi^{\dagger} \pi|\mathbf{x}\rangle \\
& =\sum_{k=0}^{\infty} \frac{\left(-i\left(\pi \mathbf{J} \pi^{\dagger}\right) \cdot\left(\pi \hat{\mathbf{n}} \pi^{\dagger}\right)\right)^{k}}{k!} \pi|\mathbf{x}\rangle  \tag{1.6}\\
& =\sum_{k=0}^{\infty} \frac{(-i \mathbf{J} \cdot \hat{\mathbf{n}})^{k}}{k!} \pi|\mathbf{x}\rangle \\
& =\mathcal{D}(\hat{\mathbf{n}}, \phi) \pi|\mathbf{x}\rangle,
\end{align*}
$$

so $[\mathcal{D}(\hat{\mathbf{n}}, \phi), \pi]|\mathbf{x}\rangle=0$, for any position state $|\mathbf{x}\rangle$, and therefore these operators commute in general.

## Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1

