# Peeter Joot <br> peeterjoot@protonmail.com 

## Plane wave and spinor under time reversal

Q: [1] pr 4.7
(a) Find the time reversed form of a spinless plane wave state in three dimensions.
(b) For the eigenspinor of $\sigma \cdot \hat{\mathbf{n}}$ expressed in terms of polar and azimuthal angles $\beta$ and $\gamma$, show that $-i \sigma_{y} \chi^{*}(\hat{\mathbf{n}})$ has the reversed spin direction.

A: part (a) The Hamiltonian for a plane wave is

$$
\begin{equation*}
H=\frac{\mathbf{p}^{2}}{2 m}=i \frac{\partial .}{\partial t} \tag{1.1}
\end{equation*}
$$

Under time reversal the momentum side transforms as

$$
\begin{align*}
\Theta \frac{\mathbf{p}^{2}}{2 m} \Theta^{-1} & =\frac{\left(\Theta \mathbf{p} \Theta^{-1}\right) \cdot\left(\Theta \mathbf{p} \Theta^{-1}\right)}{2 m} \\
& =\frac{(-\mathbf{p}) \cdot(-\mathbf{p})}{2 m}  \tag{1.2}\\
& =\frac{\mathbf{p}^{2}}{2 m} .
\end{align*}
$$

The time derivative side of the equation is also time reversal invariant

$$
\begin{align*}
\Theta i \frac{\partial}{\partial t} \Theta^{-1} & =\Theta i \Theta^{-1} \Theta \frac{\partial}{\partial t} \Theta^{-1} \\
& =-i \frac{\partial}{\partial(-t)}  \tag{1.3}\\
& =i \frac{\partial}{\partial t} .
\end{align*}
$$

Solutions to this equation are linear combinations of

$$
\begin{equation*}
\psi(\mathbf{x}, t)=e^{i \mathbf{k} \cdot \mathbf{x}-i E t / \hbar}, \tag{1.4}
\end{equation*}
$$

where $\hbar^{2} \mathbf{k}^{2} / 2 m=E$, the energy of the particle. Under time reversal we have

$$
\begin{align*}
\psi(\mathbf{x}, t) & \rightarrow e^{-i \mathbf{k} \cdot \mathbf{x}+i E(-t) / \hbar} \\
& =\left(e^{i \mathbf{k} \cdot \mathbf{x}-i E(-t) / \hbar}\right)^{*}  \tag{1.5}\\
& =\psi^{*}(\mathbf{x},-t)
\end{align*}
$$

A: part (b) The text uses a requirement for time reversal of spin states to show that the Pauli matrix form of the time reversal operator is

$$
\begin{equation*}
\Theta=-i \sigma_{y} K \tag{1.6}
\end{equation*}
$$

where $K$ is a complex conjugating operator. The form of the spin up state used in that demonstration was

$$
\begin{align*}
|\hat{\mathbf{n}} ;+\rangle & =e^{-i S_{z} \beta / \hbar} e^{-i S_{y} \gamma / \hbar}|+\rangle \\
& =e^{-i \sigma_{z} \beta / 2} e^{-i \sigma_{y} \gamma / 2}|+\rangle \\
& =\left(\cos (\beta / 2)-i \sigma_{z} \sin (\beta / 2)\right)\left(\cos (\gamma / 2)-i \sigma_{y} \sin (\gamma / 2)\right)|+\rangle \\
& =\left(\cos (\beta / 2)-i\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \sin (\beta / 2)\right)\left(\cos (\gamma / 2)-i\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \sin (\gamma / 2)\right)|+\rangle \\
& =\left[\begin{array}{cc}
e^{-i \beta / 2} & 0 \\
0 & e^{i \beta / 2}
\end{array}\right]\left[\begin{array}{cc}
\cos (\gamma / 2) & -\sin (\gamma / 2) \\
\sin (\gamma / 2) & \cos (\gamma / 2)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]  \tag{1.7}\\
& =\left[\begin{array}{cc}
e^{-i \beta / 2} & 0 \\
0 & e^{i \beta / 2}
\end{array}\right]\left[\begin{array}{c}
\cos (\gamma / 2) \\
\sin (\gamma / 2)
\end{array}\right] \\
& =\left[\begin{array}{c}
\cos (\gamma / 2) e^{-i \beta / 2} \\
\sin (\gamma / 2) e^{i \beta / 2}
\end{array}\right]
\end{align*}
$$

The state orthogonal to this one is claimed to be

$$
\begin{align*}
|\hat{\mathbf{n}} ;-\rangle & =e^{-i S_{z} \beta / \hbar} e^{-i S_{y}(\gamma+\pi) / \hbar}|+\rangle  \tag{1.8}\\
& =e^{-i \sigma_{z} \beta / 2} e^{-i \sigma_{y}(\gamma+\pi) / 2}|+\rangle .
\end{align*}
$$

We have

$$
\begin{equation*}
\cos ((\gamma+\pi) / 2)=\operatorname{Re} e^{i(\gamma+\pi) / 2}=\operatorname{Re} i e^{i \gamma / 2}=-\sin (\gamma / 2), \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin ((\gamma+\pi) / 2)=\operatorname{Im} e^{i(\gamma+\pi) / 2}=\operatorname{Im} i e^{i \gamma / 2}=\cos (\gamma / 2) \tag{1.10}
\end{equation*}
$$

so we should have

$$
|\hat{\mathbf{n}} ;-\rangle=\left[\begin{array}{c}
-\sin (\gamma / 2) e^{-i \beta / 2}  \tag{1.11}\\
\cos (\gamma / 2) e^{i \beta / 2}
\end{array}\right]
$$

This looks right, but we can sanity check orthogonality

$$
\langle\hat{\mathbf{n}} ;-\mid \hat{\mathbf{n}} ;+\rangle=\left[\begin{array}{ll}
-\sin (\gamma / 2) e^{i \beta / 2} & \cos (\gamma / 2) e^{-i \beta / 2}
\end{array}\right]\left[\begin{array}{c}
\cos (\gamma / 2) e^{-i \beta / 2}  \tag{1.12}\\
\sin (\gamma / 2) e^{i \beta / 2}
\end{array}\right]=0,
$$

as expected.
The task at hand appears to be the operation on the column representation of $|\hat{\mathbf{n}} ;+\rangle$ using the Pauli representation of the time reversal operator. That is

$$
\begin{align*}
\Theta|\hat{\mathbf{n}} ;+\rangle & =-i \sigma_{y} K\left[\begin{array}{c}
e^{-i \beta / 2} \cos (\gamma / 2) \\
e^{i \beta / 2} \sin (\gamma / 2)
\end{array}\right] \\
& =-i\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]\left[\begin{array}{c}
e^{i \beta / 2} \cos (\gamma / 2) \\
e^{-i \beta / 2} \sin (\gamma / 2)
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
e^{i \beta / 2} \cos (\gamma / 2) \\
e^{-i \beta / 2} \sin (\gamma / 2)
\end{array}\right]  \tag{1.13}\\
& =\left[\begin{array}{cc}
-e^{-i \beta / 2} \sin (\gamma / 2) \\
e^{i \beta / 2} \cos (\gamma / 2)
\end{array}\right] \\
& =|\hat{\mathbf{n}} ;-\rangle . \quad \square
\end{align*}
$$

## Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1

