
Peeter Joot
peeter.joot@gmail.com

Translation operator problems

Exercise 1.1 One dimensional translation operator. ([1] pr. 1.28)

1. Evaluate the classical Poisson bracket

(1.1)
[
x, F(p)

]
classical

2. Evaluate the commutator

(1.2)
[

x, eipa/ h̄
]

3. Using the result in 2, prove that
(1.3)eipa/ h̄ ∣∣x′〉 ,

is an eigenstate of the coordinate operator x.

Answer for Exercise 1.1

Part 1.

(1.4)

[
x, F(p)

]
classical =

∂x
∂x

∂F(p)
∂p
− ∂x

∂p
∂F(p)

∂x

=
∂F(p)

∂p
.

Part 2. Having worked backwards through these problems, the answer for this one dimensional
problem can be obtained from eq. (1.25) and is

(1.5)
[

x, eipa/ h̄
]

= aeipa/ h̄.

Part 3.

(1.6)xeipa/ h̄ ∣∣x′〉 =
([

x, eipa/ h̄
]

eipa/ h̄x+
) ∣∣x′〉 =

(
aeipa/ h̄ + eipa/ h̄x′

) ∣∣x′〉 =
(
a + x′

) ∣∣x′〉 .

This demonstrates that eipa/ h̄ |x′〉 is an eigenstate of x with eigenvalue a + x′.
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Exercise 1.2 Polynomial commutators. ([1] pr. 1.29)

1. For power series F, G, verify

[xk, G(p)] = i h̄
∂G
∂pk

, [pk, F(x)] = −i h̄
∂F
∂xk

. (1.7)

2. Evaluate
[
x2, p2], and compare to the classical Poisson bracket

[
x2, p2]

classical.

Answer for Exercise 1.2

Part 1. Let

G(p) = ∑
klm

aklm pk
1 pl

2 pm
3

F(x) = ∑
klm

bklmxk
1xl

2xm
3 .

(1.8)

It is simpler to work with a specific xk, say xk = y. The validity of the general result will still be
clear doing so. Expanding the commutator gives

(1.9)

[
y, G(p)

]
= ∑

klm
aklm

[
y, pk

1 pl
2 pm

3

]
= ∑

klm
aklm

(
ypk

1 pl
2 pm

3 − pk
1 pl

2 pm
3 y
)

= ∑
klm

aklm

(
pk

1ypl
2 pm

3 − pk
1ypl

2 pm
3

)
= ∑

klm
aklm pk

1

[
y, pl

2

]
pm

3 .

From eq. (1.23), we have
[
y, pl

2
]

= li h̄pl−1
2 , so

(1.10)

[
y, G(p)

]
= ∑

klm
aklm pk

1

[
y, pl

2

] (
li h̄pl−1

2

)
pm

3

= i h̄
∂G(p)

∂y
.

It is straightforward to show that
[
p, xl] = −li h̄xl−1, allowing for a similar computation of the

momentum commutator
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(1.11)

[
py, F(x)

]
= ∑

klm
bklm

[
py, xk

1xl
2xm

3

]
= ∑

klm
bklm

(
pyxk

1xl
2xm

3 − xk
1xl

2xm
3 py

)
= ∑

klm
bklm

(
xk

1 pyxl
2xm

3 − xk
1 pyxl

2xm
3

)
= ∑

klm
bklmxk

1

[
py, xl

2

]
xm

3

= ∑
klm

bklmxk
1

(
−li h̄xl−1

2

)
xm

3

= −i h̄
∂F(x)
∂py

.

Part 2. It isn’t clear to me how the results above can be used directly to compute
[
x2, p2]. However,

when the first term of such a commutator is a mononomial, it can be expanded in terms of an x
commutator

(1.12)

[
x2, G(p)

]
= x2G − Gx2

= x (xG)− Gx2

= x ([x, G] + Gx)− Gx2

= x [x, G] + (xG) x − Gx2

= x [x, G] + ([x, G] +��Gx) x −�
��Gx2

= x [x, G] + [x, G] x.

Similarly,

(1.13)
[
x3, G(p)

]
= x2 [x, G] + x [x, G] x + [x, G] x2.

An induction hypothesis can be formed

(1.14)
[

xk, G(p)
]

=
k−1

∑
j=0

xk−1−j [x, G] xj,

and demonstrated

3



(1.15)

[
xk+1, G(p)

]
= xk+1G − Gxk+1

= x
(

xkG
)
− Gxk+1

= x
([

xk, G
]

+ Gxk
)
− Gxk+1

= x
[

xk, G
]

+ (xG) xk − Gxk+1

= x
[

xk, G
]

+ ([x, G] + Gx) xk − Gxk+1

= x
[

xk, G
]

+ [x, G] xk

= x
k−1

∑
j=0

xk−1−j [x, G] xj + [x, G] xk

=
k−1

∑
j=0

x(k+1)−1−j [x, G] xj + [x, G] xk

=
k

∑
j=0

x(k+1)−1−j [x, G] xj. �

That was a bit overkill for this problem, but may be useful later. Application of this to the problem
gives

(1.16)

[
x2, p2] = x

[
x, p2] +

[
x, p2] x

= xi h̄
∂p2

∂x
+ i h̄

∂p2

∂x
x

= x2i h̄p + 2i h̄px
= i h̄

(
2xp + 2px

)
.

The classical commutator is

(1.17)

[
x2, p2]

classical =
∂x2

∂x
∂p2

∂p
− ∂x2

∂p
∂p2

∂x
= 2x2p
= 2xp + 2px.

This demonstrates the expected relation between the classical and quantum commutators[
x2, p2] = i h̄

[
x2, p2]

classical . (1.18)

Exercise 1.3 Translation operator and position expectation. ([1] pr. 1.30)

The translation operator for a finite spatial displacement is given by
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(1.19)J(l) = exp
(
−ip · l/ h̄

)
,

where p is the momentum operator.
1. Evaluate

(1.20)[xi, J(l)] .

2. Demonstrate how the expectation value 〈x〉 changes under translation.

Answer for Exercise 1.3

Part 1. For clarity, let’s set xi = y. The general result will be clear despite doing so.

(1.21)
[
y, J(l)

]
= ∑

k=0

1
k!

(
−i
h̄

) [
y, (p · l)k

]
.

The commutator expands as

(1.22)

[
y, (p · l)k

]
+ (p · l)k y = y (p · l)k

= y
(

pxlx + pyly + pzlz
)

(p · l)k−1

=
(

pxlxy + ypyly + pzlzy
)

(p · l)k−1

=
(

pxlxy + ly
(

pyy + i h̄
)

+ pzlzy
)

(p · l)k−1

= (p · l) y (p · l)k−1 + i h̄ly (p · l)k−1

= · · ·
= (p · l)k−1 y (p · l)k−(k−1) + (k − 1)i h̄ly (p · l)k−1

= (p · l)k y + ki h̄ly (p · l)k−1 .

In the above expansion, the commutation of y with px, pz has been used. This gives, for k 6= 0,

(1.23)
[
y, (p · l)k

]
= ki h̄ly (p · l)k−1 .

Note that this also holds for the k = 0 case, since y commutes with the identity operator. Plugging
back into the J commutator, we have

(1.24)

[
y, J(l)

]
= ∑

k=1

1
k!

(
−i
h̄

)
ki h̄ly (p · l)k−1

= ly ∑
k=1

1
(k − 1)!

(
−i
h̄

)
(p · l)k−1

= ly J(l).

The same pattern clearly applies with the other xi values, providing the desired relation.

[x, J(l)] =
3

∑
m=1

emlm J(l) = lJ(l). (1.25)
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Part 2. Suppose that the translated state is defined as |αl〉 = J(l) |α〉. The expectation value with
respect to this state is

(1.26)

〈
x′
〉

= 〈αl| x |αl〉
= 〈α| J†(l)xJ(l) |α〉
= 〈α| J†(l) (xJ(l)) |α〉
= 〈α| J†(l) (J(l)x + lJ(l)) |α〉
= 〈α| J† Jx + lJ† J |α〉
= 〈α| x |α〉 + l 〈α|α〉
= 〈x〉 + l.
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