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Translation operator problems

Exercise 1.1 One dimensional translation operator. ([1] pr. 1.28)

1. Evaluate the classical Poisson bracket

[x’ F(p)] classical (1'1)
2. Evaluate the commutator
[x, ei”“/h} (1.2)
3. Using the result in 2, prove that '
er/ ¥, (1.3)

is an eigenstate of the coordinate operator x.

Answer for Exercise 1.1

Part 1.
_0xdF(p) dx0F(p)

[x’ P(P)] classical — a ap - @ ox
_3F(p)
ap

(1.4)

Part 2. Having worked backwards through these problems, the answer for this one dimensional
problem can be obtained from eq. (1.25) and is

[x, ei””/h} = gelPe/ (1.5)
Part 3.
xe'Pe/ x") = ([x, eip“/h} eip”/hx+) x") = (aei”“/h + ei’”“/hx’) |x) = (a+x') |x'). (1.6)

This demonstrates that e/?*/ " |x’) is an eigenstate of x with eigenvalue a + x'.



Exercise 1.2 Polynomial commutators. ([1] pr. 1.29)
1. For power series F, G, verify

2 0
(x5, G(p)] = ihafk, (b E00)] = —ihafk. L7)

2. Evaluate [x?, p?], and compare to the classical Poisson bracket [x?, p?

classical”

Answer for Exercise 1.2

Part1. Let
G(p) = Y aumpipapy
klm
(1.8)
F(x) = Y bygmxfah .
klm

It is simpler to work with a specific xi, say x; = y. The validity of the general result will still be
clear doing so. Expanding the commutator gives

[y, G®)] = Y- aiam |y, Phpp3 |
klm

= Y (vriphpt — phvipty)
klm (1.9)

= Y (Phypsey — piypary)
klm

-3 am P |, ph] Y-

From eq. (1.23), we have [y, p5] = lifipy !, so

v, G®)] = Y aunp} [y, ph] (1imph") pt

klm (1.10)
_i96P)
=ih———.
dy
It is straightforward to show that [p, xl] = —lihx'~!, allowing for a similar computation of the

momentum commutator



[Py, EG)] =) bim [Pyrx'fxlzx? ]
klm

=Y bum

klm

k.l .m k.l .m
PyX1XaX3 — X1XpX3 Py)

/N

= Y b (st — sipday)

kim (1.11)
=Y by} [Py, xlz] x3'

klm
=Y bmx} (—lihx:’)_”) X8

klm

Part 2. Ttisn’t clear to me how the results above can be used directly to compute [xz, pz} . However,
when the first term of such a commutator is a mononomial, it can be expanded in terms of an x
commutator

[x?,G(p)] = x*G — Gx*
= x(xG) — Gx?
= x([x, G] + Gx) — Gx? (1.12)
= x[x,G] + (xG) x — Gx?
= x[x,G] + ([x, G] + G¥) x — G£Z
=x[x, G] + [x, G] x.

Similarly,
[x°, G(p)] = x*[x, G] + x[x, G] x + [x, G] x*. (1.13)

An induction hypothesis can be formed

k—1

[xk, G(p)} = ¥ 1 [x, G, (1.14)
j=0

and demonstrated



[ka, G(p)} — xk+1G . ka+1
=x (ka> — Gxf1
=x <[xk, G] + ka) — Gxf+!

x |xF, G} + (xG) xF — Gx*!

Il
=

[
x {xk, G} + ([x, G] + Gx) Xk — Gkl
[

, G} + [x, Gl ok

k—1
K17 [x, Gl & + [x, G] x

Il
=

»
Ly

% D=1 [ G o + [x, G &

T
S

xFD=1=7 [ Gl . O

M-

T
o

(1.15)

That was a bit overkill for this problem, but may be useful later. Application of this to the problem

gives

(% p°] =x [x, p] + [x,p°] x
o opr . op?
= xzhg + zhgx
= x2ihp + 2i hpx
=ih (2xp +2px).

The classical commutator is

2 2 v 9F 9 9P
[x P ]classical T ox ap ap ox
=2xp + 2px.
This demonstrates the expected relation between the classical and quantum commutators
2 21 _ ik 12 2
[x P ] =ih [x P ]classical'

Exercise 1.3 Translation operator and position expectation. ([1] pr. 1.30)

The translation operator for a finite spatial displacement is given by

(1.16)

(1.17)

(1.18)



J@) =exp (—ip-1/h), (1.19)

where p is the momentum operator.
1. Evaluate

[xi, J(D]- (1.20)
2. Demonstrate how the expectation value (x) changes under translation.

Answer for Exercise 1.3

Part 1. For clarity, let’s set x; = y. The general result will be clear despite doing so.

w10 =L (7)) e v 121

The commutator expands as

v D]+ Dy=ye-1
=y (pala + pyly + p:lz) (p - D
= (palxy + ypyly + paley) (p - 1)" !
= (paley +1y (pyy +iR) + paley) (p - D! (1.22)
( Dy D +inl, (-1t

=< le@I%“”+m Dihl, (p - D!
=(p-Vy+kinl, (p ).

In the above expansion, the commutation of y with py, p, has been used. This gives, for k # 0,
[y, (p- 1)"] = kil (p - 1)1 (1.23)

Note that this also holds for the k = 0 case, since y commutes with the identity operator. Plugging
back into the | commutator, we have

[y, J)] = Zk <h)kzhl (p-D!

NG 1y<.>@4f1 e
= ly](_

The same pattern clearly applies with the other x; values, providing the desired relation.

\./

x, JM)] = Z enln (1) =1J(1). (1.25)



Part 2. Suppose that the translated state is defined as |a;) = J(I) |a). The expectation value with
respect to this state is

(') = (o] x |ay)

= (a| JFOx] (1) |ax)

(a ') (x] (D)) |ax)

(] TFO) JO)x + 1] Q) ) (1.26)
{

(a

(x

af I Ix+1]7] |a)
!a>+1< o)
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| x
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