Peeter Joot
 peeter.joot@gmail.com

Translation operator problems

Exercise 1.1 One dimensional translation operator. ([1] pr. 1.28)

1. Evaluate the classical Poisson bracket

$$
\begin{equation*}
[x, F(p)]_{\text {classical }} \tag{1.1}
\end{equation*}
$$

2. Evaluate the commutator

$$
\begin{equation*}
\left[x, e^{i p a / \hbar}\right] \tag{1.2}
\end{equation*}
$$

3. Using the result in 2 , prove that

$$
\begin{equation*}
e^{i p a / \hbar}\left|x^{\prime}\right\rangle, \tag{1.3}
\end{equation*}
$$

is an eigenstate of the coordinate operator x.

Answer for Exercise 1.1

Part 1.

$$
\begin{align*}
{[x, F(p)]_{\text {classical }} } & =\frac{\partial x}{\partial x} \frac{\partial F(p)}{\partial p}-\frac{\partial x}{\partial p} \frac{\partial F(p)}{\partial x} \tag{1.4}\\
& =\frac{\partial F(p)}{\partial p} .
\end{align*}
$$

Part 2. Having worked backwards through these problems, the answer for this one dimensional problem can be obtained from eq. (1.25) and is

$$
\begin{equation*}
\left[x, e^{i p a / \hbar}\right]=a e^{i p a / \hbar} \tag{1.5}
\end{equation*}
$$

Part 3

$$
\begin{equation*}
x e^{i p a / \hbar}\left|x^{\prime}\right\rangle=\left(\left[x, e^{i p a / \hbar}\right] e^{i p a / \hbar} x+\right)\left|x^{\prime}\right\rangle=\left(a e^{i p a / \hbar}+e^{i p a / \hbar} x^{\prime}\right)\left|x^{\prime}\right\rangle=\left(a+x^{\prime}\right)\left|x^{\prime}\right\rangle . \tag{1.6}
\end{equation*}
$$

This demonstrates that $e^{i p a / \hbar}\left|x^{\prime}\right\rangle$ is an eigenstate of x with eigenvalue $a+x^{\prime}$.

Exercise 1.2 Polynomial commutators. ([1] pr. 1.29)

1. For power series F, G, verify

$$
\begin{equation*}
\left[x_{k}, G(\mathbf{p})\right]=i \hbar \frac{\partial G}{\partial p_{k}}, \quad\left[p_{k}, F(\mathbf{x})\right]=-i \hbar \frac{\partial F}{\partial x_{k}} . \tag{1.7}
\end{equation*}
$$

2. Evaluate $\left[x^{2}, p^{2}\right]$, and compare to the classical Poisson bracket $\left[x^{2}, p^{2}\right]_{\text {classical }}$.

Answer for Exercise 1.2

Part 1. Let

$$
\begin{align*}
& G(\mathbf{p})=\sum_{k l m} a_{k l m} p_{1}^{k} p_{2}^{l} p_{3}^{m} \\
& F(\mathbf{x})=\sum_{k l m} b_{k l m} x_{1}^{k} x_{2}^{l} x_{3}^{m} . \tag{1.8}
\end{align*}
$$

It is simpler to work with a specific x_{k}, say $x_{k}=y$. The validity of the general result will still be clear doing so. Expanding the commutator gives

$$
\begin{align*}
{[y, G(\mathbf{p})] } & =\sum_{k l m} a_{k l m}\left[y, p_{1}^{k} p_{2}^{l} p_{3}^{m}\right] \\
& =\sum_{k l m} a_{k l m}\left(y p_{1}^{k} p_{2}^{l} p_{3}^{m}-p_{1}^{k} p_{2}^{l} p_{3}^{m} y\right) \tag{1.9}\\
& =\sum_{k l m} a_{k l m}\left(p_{1}^{k} y p_{2}^{l} p_{3}^{m}-p_{1}^{k} y p_{2}^{l} p_{3}^{m}\right) \\
& =\sum_{k l m} a_{k l m} p_{1}^{k}\left[y, p_{2}^{l}\right] p_{3}^{m} .
\end{align*}
$$

From eq. (1.23), we have $\left[y, p_{2}^{l}\right]=l i \hbar p_{2}^{l-1}$, so

$$
\begin{align*}
{[y, G(\mathbf{p})] } & =\sum_{k l m} a_{k l m} p_{1}^{k}\left[y, p_{2}^{l}\right]\left(l i \hbar p_{2}^{l-1}\right) p_{3}^{m} \tag{1.10}\\
& =i \hbar \frac{\partial G(\mathbf{p})}{\partial y} .
\end{align*}
$$

It is straightforward to show that $\left[p, x^{l}\right]=-l i \hbar x^{l-1}$, allowing for a similar computation of the momentum commutator

$$
\begin{align*}
{\left[p_{y}, F(\mathbf{x})\right] } & =\sum_{k l m} b_{k l m}\left[p_{y}, x_{1}^{k} x_{2}^{l} x_{3}^{m}\right] \\
& =\sum_{k l m} b_{k l m}\left(p_{y} x_{1}^{k} x_{2}^{l} x_{3}^{m}-x_{1}^{k} x_{2}^{l} x_{3}^{m} p_{y}\right) \\
& =\sum_{k l m} b_{k l m}\left(x_{1}^{k} p_{y} x_{2}^{l} x_{3}^{m}-x_{1}^{k} p_{y} x_{2}^{l} x_{3}^{m}\right) \tag{1.11}\\
& =\sum_{k l m} b_{k l m} x_{1}^{k}\left[p_{y}, x_{2}^{l}\right] x_{3}^{m} \\
& =\sum_{k l m} b_{k l m} x_{1}^{k}\left(-l i \hbar x_{2}^{l-1}\right) x_{3}^{m} \\
& =-i \hbar \frac{\partial F(\mathbf{x})}{\partial p_{y}} .
\end{align*}
$$

Part 2. It isn't clear to me how the results above can be used directly to compute $\left[x^{2}, p^{2}\right]$. However, when the first term of such a commutator is a mononomial, it can be expanded in terms of an x commutator

$$
\begin{align*}
{\left[x^{2}, G(\mathbf{p})\right] } & =x^{2} G-G x^{2} \\
& =x(x G)-G x^{2} \\
& =x([x, G]+G x)-G x^{2} \tag{1.12}\\
& =x[x, G]+(x G) x-G x^{2} \\
& =x[x, G]+([x, G]+G x) x-G x^{2} \\
& =x[x, G]+[x, G] x .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left[x^{3}, G(\mathbf{p})\right]=x^{2}[x, G]+x[x, G] x+[x, G] x^{2} \tag{1.13}
\end{equation*}
$$

An induction hypothesis can be formed

$$
\begin{equation*}
\left[x^{k}, G(\mathbf{p})\right]=\sum_{j=0}^{k-1} x^{k-1-j}[x, G] x^{j} \tag{1.14}
\end{equation*}
$$

and demonstrated

$$
\begin{align*}
{\left[x^{k+1}, G(\mathbf{p})\right] } & =x^{k+1} G-G x^{k+1} \\
& =x\left(x^{k} G\right)-G x^{k+1} \\
& =x\left(\left[x^{k}, G\right]+G x^{k}\right)-G x^{k+1} \\
& =x\left[x^{k}, G\right]+(x G) x^{k}-G x^{k+1} \\
& =x\left[x^{k}, G\right]+([x, G]+G x) x^{k}-G x^{k+1} \\
& =x\left[x^{k}, G\right]+[x, G] x^{k} \tag{1.15}\\
& =x \sum_{j=0}^{k-1} x^{k-1-j}[x, G] x^{j}+[x, G] x^{k} \\
& =\sum_{j=0}^{k-1} x^{(k+1)-1-j}[x, G] x^{j}+[x, G] x^{k} \\
& =\sum_{j=0}^{k} x^{(k+1)-1-j}[x, G] x^{j} .
\end{align*}
$$

That was a bit overkill for this problem, but may be useful later. Application of this to the problem gives

$$
\begin{align*}
{\left[x^{2}, p^{2}\right] } & =x\left[x, p^{2}\right]+\left[x, p^{2}\right] x \\
& =x i \hbar \frac{\partial p^{2}}{\partial x}+i \hbar \frac{\partial p^{2}}{\partial x} x \tag{1.16}\\
& =x 2 i \hbar p+2 i \hbar p x \\
& =i \hbar(2 x p+2 p x) .
\end{align*}
$$

The classical commutator is

$$
\begin{align*}
{\left[x^{2}, p^{2}\right]_{\text {classical }} } & =\frac{\partial x^{2}}{\partial x} \frac{\partial p^{2}}{\partial p}-\frac{\partial x^{2}}{\partial p} \frac{\partial p^{2}}{\partial x} \tag{1.17}\\
& =2 x 2 p \\
& =2 x p+2 p x .
\end{align*}
$$

This demonstrates the expected relation between the classical and quantum commutators

$$
\begin{equation*}
\left[x^{2}, p^{2}\right]=i \hbar\left[x^{2}, p^{2}\right]_{\text {classical }} . \tag{1.18}
\end{equation*}
$$

Exercise 1.3 Translation operator and position expectation. ([1] pr. 1.30)

The translation operator for a finite spatial displacement is given by

$$
\begin{equation*}
J(\mathbf{l})=\exp (-i \mathbf{p} \cdot \mathbf{l} / \hbar), \tag{1.19}
\end{equation*}
$$

where \mathbf{p} is the momentum operator.

1. Evaluate

$$
\begin{equation*}
\left[x_{i}, J(\mathbf{l})\right] . \tag{1.20}
\end{equation*}
$$

2. Demonstrate how the expectation value $\langle\mathbf{x}\rangle$ changes under translation.

Answer for Exercise 1.3

Part 1. For clarity, let's set $x_{i}=y$. The general result will be clear despite doing so.

$$
\begin{equation*}
[y, J(\mathbf{l})]=\sum_{k=0} \frac{1}{k!}\left(\frac{-i}{\hbar}\right)\left[y,(\mathbf{p} \cdot \mathbf{l})^{k}\right] . \tag{1.21}
\end{equation*}
$$

The commutator expands as

$$
\begin{align*}
{\left[y,(\mathbf{p} \cdot \mathbf{l})^{k}\right]+(\mathbf{p} \cdot \mathbf{l})^{k} } & =y(\mathbf{p} \cdot \mathbf{l})^{k} \\
& =y\left(p_{x} l_{x}+p_{y} l_{y}+p_{z} l_{z}\right)(\mathbf{p} \cdot \mathbf{l})^{k-1} \\
& =\left(p_{x} l_{x} y+y p_{y} l_{y}+p_{z} l_{z} y\right)(\mathbf{p} \cdot \mathbf{l})^{k-1} \\
& =\left(p_{x} l_{x} y+l_{y}\left(p_{y} y+i \hbar\right)+p_{z} l_{z} y\right)(\mathbf{p} \cdot \mathbf{l})^{k-1} \tag{1.22}\\
& =(\mathbf{p} \cdot \mathbf{l}) y(\mathbf{p} \cdot \mathbf{l})^{k-1}+i \hbar l_{y}(\mathbf{p} \cdot \mathbf{l})^{k-1} \\
& =\cdots \\
& =(\mathbf{p} \cdot \mathbf{l})^{k-1} y(\mathbf{p} \cdot \mathbf{1})^{k-(k-1)}+(k-1) i \hbar l_{y}(\mathbf{p} \cdot \mathbf{l})^{k-1} \\
& =(\mathbf{p} \cdot \mathbf{l})^{k} y+k i \hbar l_{y}(\mathbf{p} \cdot \mathbf{l})^{k-1} .
\end{align*}
$$

In the above expansion, the commutation of y with p_{x}, p_{z} has been used. This gives, for $k \neq 0$,

$$
\begin{equation*}
\left[y,(\mathbf{p} \cdot \mathbf{1})^{k}\right]=k i \hbar l_{y}(\mathbf{p} \cdot \mathbf{1})^{k-1} . \tag{1.23}
\end{equation*}
$$

Note that this also holds for the $k=0$ case, since y commutes with the identity operator. Plugging back into the J commutator, we have

$$
\begin{aligned}
{[y, J(\mathbf{l})] } & =\sum_{k=1} \frac{1}{k!}\left(\frac{-i}{\hbar}\right) k i \hbar l_{y}(\mathbf{p} \cdot \mathbf{1})^{k-1} \\
& =l_{y} \sum_{k=1} \frac{1}{(k-1)!}\left(\frac{-i}{\hbar}\right)(\mathbf{p} \cdot \mathbf{l})^{k-1} \\
& =l_{y} J(\mathbf{l}) .
\end{aligned}
$$

The same pattern clearly applies with the other x_{i} values, providing the desired relation.

$$
\begin{equation*}
[\mathbf{x}, J(\mathbf{l})]=\sum_{m=1}^{3} \mathbf{e}_{m} l_{m} J(\mathbf{l})=\mathbf{1} J(\mathbf{l}) . \tag{1.25}
\end{equation*}
$$

Part 2. Suppose that the translated state is defined as $\left|\alpha_{1}\right\rangle=J(\mathbf{1})|\alpha\rangle$. The expectation value with respect to this state is

$$
\begin{align*}
\left\langle\mathbf{x}^{\prime}\right\rangle & =\left\langle\alpha_{\mathbf{1}}\right| \mathbf{x}\left|\alpha_{\mathbf{1}}\right\rangle \\
& =\langle\alpha| J^{\dagger} \mathbf{l} \mathbf{1} \mathbf{x} J(\mathbf{l})|\alpha\rangle \\
& =\langle\alpha| J^{\dagger}(\mathbf{l})(\mathbf{x} J(\mathbf{1}))|\alpha\rangle \\
& =\langle\alpha| J^{\dagger}(\mathbf{l})(J(\mathbf{l}) \mathbf{x}+\mathbf{1} J(\mathbf{l}))|\alpha\rangle \tag{1.26}\\
& =\langle\alpha| J^{\dagger} J \mathbf{x}+\mathbf{1} J^{\dagger} J|\alpha\rangle \\
& =\langle\alpha| \mathbf{x}|\alpha\rangle+\mathbf{1}\langle\alpha \mid \alpha\rangle \\
& =\langle\mathbf{x}\rangle+\mathbf{1} .
\end{align*}
$$

Bibliography

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014. 1.1, 1.2, 1.3

