Peeter Joot
peeter.joot@gmail.com

Tschebyscheff polynomials

In ancient times (i.e. 2nd year undergrad) I recall being very impressed with Tschebyscheff poly-
nomials for designing lowpass filters. I'd used Tschebyscheff filters for the hardware we used for a
speech recognition system our group built in the design lab. One of the benefits of these polynomi-
als is that the oscillation in the |x| < 1 interval is strictly bounded. This same property, as well as
the unbounded nature outside of the [-1, 1] interval turns out to have applications to antenna array
design.

The Tschebyscheff polynomials are defined by

Ty (x) = cos <m cos ! x) , x| <1 (1.1a)

Ty (x) = cosh (m cosh™! x) , x> 1 (1.1b)

Range restrictions and hyperbolic form.  Prof. Eleftheriades’s notes made a point to point out the def-
inition in the |x| > 1 interval, but that can also be viewed as a consequence instead of a definition if
the range restriction is removed. For example, suppose x = 7, and let

cos 17=9, (1.2)
SO
7=costl
_elre? (13)
a 2
= cosh(if),
or
—icosh 17 =6. (1.4)
T,u(7) = cos(—mi cosh™1 7) (1.5)

= cosh(m cosh™? 7).

The same argument clearly applies to any other value outside of the |x| < 1 range, so without any
restrictions, these polynomials can be defined as just



Tin(x) = cos (m cos™! x) . (1.6)

Polynomial nature. ~ Equation (1.6) does not obviously look like a polynomial. Let’s proceed to verify
the polynomial nature for the first couple values of m.

e m=0.

To(x) = cos(0cos ™! x) (1.7)
= cos(0) '
=1.

em=1

Ty (x) = cos(1 cos ™! x) (1.8)

= X.
o m=2
To(x) = cos(2 cos ™! x) (1.9)

=2cos?cos H(x) — 1
=222 — 1.

To examine the general case

-1 x)

T (x) = cos(m cos
= Re ejm cos™!

= Re (ej cos™! x) "

X

m
= Re (coscos ! x + jsin cos ! x)

(
=Re (x +7ivV1— x2> (1.10)
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This expansion was a bit cavaliar with the signs of the sin cos 1x = v/1— a2 terms, since the
negative sign should be picked for the root when x € [—1,0]. However, that doesn’t matter in the

end since the real part operation selects only powers of two of this root.
The final result of the expansion above can be written

[m/2]
T = . () 02 (-
k=0

(1.11)

This clearly shows the polynomial nature of these functions, and is also perfectly well defined for

any value of x. The even and odd alternation with m is also clear in this explicit expansion.

Some plots  The first couple polynomials are plotted in fig. 1.1.
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Figure 1.1: A couple Chebychev plots.

Properties  In [1] a few properties can be found for these polynomials

Tin(x) = 2xTyy—1 — T2

0=(1-2x%) AT (x) + mx Ty (x) — mTpy_1(x)
dx
0=(1-x?) #Ty(x) xdTM(x) + 2 Tp(x)

dx? dx

0 ifm+#n

1 1
/ ————Tu(X)Ty(x)dx =< 7 ifm=n=0
1VL—a? /2 ifm=nm#0

(1.12a)

(1.12b)

(1.12¢)

(1.12d)



Exercise 1.1 Recurrance relation.

Prove eq. (1.12a).
Answer for Exercise 1.1
To show this, let

x = cosf.

2xTy 1 — Tyy—p = 2cos 6 cos((m — 1)8) — cos((m — 2)0).

Recall the cosine addition formulas

cos(a + b) = Re e/@*?)
= Reel%l®
=Re (cosa +jsina) (cosb +jsinb)
=cosacosb — sinasinb.

Applying this gives

(1.13)

(1.14)

(1.15)

2xTy 1 — Tyy_p =2cosb (cos(m@) cos 0 + sin(m6) sin 9) — (cos(m@) c0s(20) + sin(m#0) sin(29)>

=2cosf (cos(m@) cos 0 + sin(mf) sin 9))

- (cos(mf))(cos2 0 — sin® @) + 2 sin(m0) sin O cos 9)

= cos(mf) (cos® 6 + sin® 0)
= T (x). O

Exercise 1.2 First order LDE relation.
Prove eq. (1.12b).

Answer for Exercise 1.2

To show this, again, let

X = cos®.
Observe that
do
1=—sinf—
sin T
SO

(1.16)

(1.17)

(1.18)



d _dod

de - ddd (1.19)
T sin@do’
Plugging this in gives
(1—2%) ddx T (x) + mxTy,(x) — mTy_q1(x)
= sin” 0 <— 311119 dde) cos(mb) + m cos 6 cos(mb) — m cos((m — 1)6) (1.20)

= — sin O(—m sin(mb)) + m cos 6 cos(mB) — m cos((m — 1)0).
Applying the cosine addition formula eq. (1.15) gives

m (sin 6 sin(m6) + cos 6 cos(mB)) — m (cos(m6) cos O + sin(mb) sin B) = 0. O (1.21)

Exercise 1.3 Second order LDE relation.
Prove eq. (1.12c).
Answer for Exercise 1.3

This follows the same way. The first derivative was

dlw(x) 1 d
dx ~ sinfdb cos(mb)
= —ﬁ(—m) sin(m) (1.22)

1
=m sin(m#),
sin 0 (m8)
so the second derivative is

d?T,(x) 1 1 .
dx2 - sin 0 dO sin 0 sin(m6)

1 cos 6 1
- _ P G - 0) ) .
mo—a < - sin(m#0) + - emcos(m ))

(1.23)

Putting all the pieces together gives

2
(1 B xz) d ;;12(3() B xdT;x(x) N szm(X)

(1.24)

1 5
" sin(mf) + m*~ cos(m0)

=m (@S o sin(mf) — m Cos(m9)> — cosfm
sin 6
=0. O



Exercise 1.4 Orthogonality relation

Prove eq. (1.12d).

Answer for Exercise 1.4

First consider the 0,0 inner product, making an x = cos 6, so that dx = — sin 640
1 1
(Ty, To) = /71 (1_xz)mdx
= /O <_s1r116> — sin 646 (1.25)
=0— ()
= TT.

Note that since the [—7r,0] interval was chosen, the negative root of sin”@ = 1 — x2 was chosen,
since sin ¢ is negative in that interval.
The m,m inner product with m #0 is

1 1
Ty, Tor) = /  (Tu)dx
< m m> 1 (1_x2)1/2( m( ))
0 1 5 .
_ / — ) cos?(m6) — sin 6d6
—n sin 6
0 1.26
= / cos?(m0)do (1.26)
1—”0
- - / (cos(2mB) + 1) d6
2 J)-n
_
=5
So far so good. For m # n the inner product is
0
(T, T) :/ cos(m@) cos(n6)do
—7T
1 /0 , . . ) ,
= jmo —jmf jno —jno
4/%(3 +e )(e +e )d@
1 /0 , . ) . .
- = j(m+n)f —j(m+n)@ j(m—n)6 j(—m+n)f
4/_n <e +e +e +e )d@ (1.27)

1 /0
=5 /_ﬂ (cos((m + n)0) + cos((m — n)6)) do
1 <sin((m +n)0) . sin((m — 71)9))

m+n m-—n

0

2
=0. O

—TT



Bibliography

[1] M. Abramowitz and I.A. Stegun. Handbook of mathematical functions with formulas, graphs, and
mathematical tables, volume 55. Dover publications, 1964. 1



