Peeter Joot
 peeter.joot@gmail.com

Tschebyscheff polynomials

In ancient times (i.e. 2nd year undergrad) I recall being very impressed with Tschebyscheff polynomials for designing lowpass filters. I'd used Tschebyscheff filters for the hardware we used for a speech recognition system our group built in the design lab. One of the benefits of these polynomials is that the oscillation in the $|x|<1$ interval is strictly bounded. This same property, as well as the unbounded nature outside of the $[-1,1]$ interval turns out to have applications to antenna array design.

The Tschebyscheff polynomials are defined by

$$
\begin{array}{cl}
T_{m}(x)=\cos \left(m \cos ^{-1} x\right), & |x|<1 \\
T_{m}(x)=\cosh \left(m \cosh ^{-1} x\right), & |x|>1 . \tag{1.1b}
\end{array}
$$

Range restrictions and hyperbolic form. Prof. Eleftheriades's notes made a point to point out the definition in the $|x|>1$ interval, but that can also be viewed as a consequence instead of a definition if the range restriction is removed. For example, suppose $x=7$, and let

$$
\begin{equation*}
\cos ^{-1} 7=\theta, \tag{1.2}
\end{equation*}
$$

so

$$
\begin{align*}
7 & =\cos \theta \\
& =\frac{e^{i \theta}+e^{-i \theta}}{2} \tag{1.3}\\
& =\cosh (i \theta),
\end{align*}
$$

or

$$
\begin{align*}
- & i \cosh ^{-1} 7=\theta . \tag{1.4}\\
T_{m}(7) & =\cos \left(-m i \cosh ^{-1} 7\right) \tag{1.5}\\
& =\cosh \left(m \cosh ^{-1} 7\right) .
\end{align*}
$$

The same argument clearly applies to any other value outside of the $|x|<1$ range, so without any restrictions, these polynomials can be defined as just

$$
\begin{equation*}
T_{m}(x)=\cos \left(m \cos ^{-1} x\right) \tag{1.6}
\end{equation*}
$$

Polynomial nature. Equation (1.6) does not obviously look like a polynomial. Let's proceed to verify the polynomial nature for the first couple values of m.

- $m=0$.

$$
\begin{align*}
T_{0}(x) & =\cos \left(0 \cos ^{-1} x\right) \tag{1.7}\\
& =\cos (0) \\
& =1
\end{align*}
$$

- $m=1$.

$$
\begin{align*}
T_{1}(x) & =\cos \left(1 \cos ^{-1} x\right) \tag{1.8}\\
& =x .
\end{align*}
$$

- $m=2$.

$$
\begin{align*}
T_{2}(x) & =\cos \left(2 \cos ^{-1} x\right) \tag{1.9}\\
& =2 \cos ^{2} \cos ^{-1}(x)-1 \\
& =2 x^{2}-1
\end{align*}
$$

To examine the general case

$$
\begin{align*}
T_{m}(x) & =\cos \left(m \cos ^{-1} x\right) \\
& =\operatorname{Re} e^{j m \cos ^{-1} x} \\
& =\operatorname{Re}\left(e^{j \cos ^{-1} x}\right)^{m} \\
& =\operatorname{Re}\left({\left.\cos \cos ^{-1} x+j \sin \cos ^{-1} x\right)^{m}}=\operatorname{Re}\left(x+j \sqrt{1-x^{2}}\right)^{m}\right. \\
& =\operatorname{Re}\left(x^{m}+\binom{m}{1} j x^{m-1}\left(1-x^{2}\right)^{1 / 2}\right. \tag{1.10}\\
& \left.-\binom{m}{2} x^{m-2}\left(1-x^{2}\right)^{2 / 2}-\binom{m}{3} j x^{m-3}\left(1-x^{2}\right)^{3 / 2}+\binom{m}{4} x^{m-4}\left(1-x^{2}\right)^{4 / 2}+\cdots\right) \\
& =x^{m}-\binom{m}{2} x^{m-2}\left(1-x^{2}\right)+\binom{m}{4} x^{m-4}\left(1-x^{2}\right)^{2}-\cdots
\end{align*}
$$

This expansion was a bit cavaliar with the signs of the $\sin \cos ^{-1} x=\sqrt{1-x^{2}}$ terms, since the negative sign should be picked for the root when $x \in[-1,0]$. However, that doesn't matter in the end since the real part operation selects only powers of two of this root.

The final result of the expansion above can be written

$$
\begin{equation*}
T_{m}(x)=\sum_{k=0}^{\lfloor m / 2\rfloor}\binom{m}{2 k}(-1)^{k} x^{m-2 k}\left(1-x^{2}\right)^{k} \tag{1.11}
\end{equation*}
$$

This clearly shows the polynomial nature of these functions, and is also perfectly well defined for any value of x. The even and odd alternation with m is also clear in this explicit expansion.

Some plots The first couple polynomials are plotted in fig. 1.1.

Figure 1.1: A couple Chebychev plots.

Properties In [1] a few properties can be found for these polynomials

$$
\begin{gather*}
T_{m}(x)=2 x T_{m-1}-T_{m-2} \tag{1.12a}\\
0=\left(1-x^{2}\right) \frac{d T_{m}(x)}{d x}+m x T_{m}(x)-m T_{m-1}(x) \tag{1.12b}\\
0=\left(1-x^{2}\right) \frac{d^{2} T_{m}(x)}{d x^{2}}-x \frac{d T_{m}(x)}{d x}+m^{2} T_{m}(x) \tag{1.12c}\\
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} T_{m}(x) T_{n}(x) d x= \begin{cases}0 & \text { if } m \neq n \\
\pi & \text { if } m=n=0 \\
\pi / 2 & \text { if } m=n, m \neq 0\end{cases} \tag{1.12d}
\end{gather*}
$$

Exercise 1.1 Recurrance relation.

Prove eq. (1.12a).

Answer for Exercise 1.1

To show this, let

$$
\begin{gather*}
x=\cos \theta . \tag{1.13}\\
2 x T_{m-1}-T_{m-2}=2 \cos \theta \cos ((m-1) \theta)-\cos ((m-2) \theta) . \tag{1.14}
\end{gather*}
$$

Recall the cosine addition formulas

$$
\begin{align*}
\cos (a+b) & =\operatorname{Re} e^{j(a+b)} \\
& =\operatorname{Re} e^{j a} e^{j b} \tag{1.15}\\
& =\operatorname{Re}(\cos a+j \sin a)(\cos b+j \sin b) \\
& =\cos a \cos b-\sin a \sin b .
\end{align*}
$$

Applying this gives

$$
\begin{align*}
2 x T_{m-1}-T_{m-2}= & 2 \cos \theta(\cos (m \theta) \cos \theta+\sin (m \theta) \sin \theta)-(\cos (m \theta) \cos (2 \theta)+\sin (m \theta) \sin (2 \theta)) \\
= & 2 \cos \theta(\cos (m \theta) \cos \theta+\sin (m \theta) \sin \theta)) \\
& -\left(\cos (m \theta)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+2 \sin (m \theta) \sin \theta \cos \theta\right) \\
= & \cos (m \theta)\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
= & T_{m}(x) . \quad \square \tag{1.16}
\end{align*}
$$

Exercise 1.2 First order LDE relation.

Prove eq. (1.12b).

Answer for Exercise 1.2

To show this, again, let

$$
\begin{equation*}
x=\cos \theta . \tag{1.17}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
1=-\sin \theta \frac{d \theta}{d x} \tag{1.18}
\end{equation*}
$$

so

$$
\begin{align*}
\frac{d}{d x} & =\frac{d \theta}{d x} \frac{d}{d \theta} \tag{1.19}\\
& =-\frac{1}{\sin \theta} \frac{d}{d \theta} .
\end{align*}
$$

Plugging this in gives

$$
\begin{align*}
\left(1-x^{2}\right) & \frac{d}{d x} T_{m}(x)+m x T_{m}(x)-m T_{m-1}(x) \\
& =\sin ^{2} \theta\left(-\frac{1}{\sin \theta} \frac{d}{d \theta}\right) \cos (m \theta)+m \cos \theta \cos (m \theta)-m \cos ((m-1) \theta) \tag{1.20}\\
& =-\sin \theta(-m \sin (m \theta))+m \cos \theta \cos (m \theta)-m \cos ((m-1) \theta) .
\end{align*}
$$

Applying the cosine addition formula eq. (1.15) gives

$$
\begin{equation*}
m(\sin \theta \sin (m \theta)+\cos \theta \cos (m \theta))-m(\cos (m \theta) \cos \theta+\sin (m \theta) \sin \theta)=0 . \tag{1.21}
\end{equation*}
$$

Exercise 1.3 Second order LDE relation.

Prove eq. (1.12c).

Answer for Exercise 1.3

This follows the same way. The first derivative was

$$
\begin{align*}
\frac{d T_{m}(x)}{d x} & =-\frac{1}{\sin \theta} \frac{d}{d \theta} \cos (m \theta) \\
& =-\frac{1}{\sin \theta}(-m) \sin (m \theta) \tag{1.22}\\
& =m \frac{1}{\sin \theta} \sin (m \theta),
\end{align*}
$$

so the second derivative is

$$
\begin{align*}
\frac{d^{2} T_{m}(x)}{d x^{2}} & =-m \frac{1}{\sin \theta} \frac{d}{d \theta} \frac{1}{\sin \theta} \sin (m \theta) \tag{1.23}\\
& =-m \frac{1}{\sin \theta}\left(-\frac{\cos \theta}{\sin ^{2} \theta} \sin (m \theta)+\frac{1}{\sin \theta} m \cos (m \theta)\right) .
\end{align*}
$$

Putting all the pieces together gives

$$
\begin{align*}
\left(1-x^{2}\right) & \frac{d^{2} T_{m}(x)}{d x^{2}}-x \frac{d T_{m}(x)}{d x}+m^{2} T_{m}(x) \\
& =m\left(\frac{\cos \theta}{\sin \theta} \sin (m \theta)-m \cos (m \theta)\right)-\cos \theta m \frac{1}{\sin \theta} \sin (m \theta)+m^{2} \cos (m \theta) \tag{1.24}\\
& =0 .
\end{align*}
$$

Exercise 1.4 Orthogonality relation

Prove eq. (1.12d).

Answer for Exercise 1.4

First consider the 0,0 inner product, making an $x=\cos \theta$, so that $d x=-\sin \theta d \theta$

$$
\begin{align*}
\left\langle T_{0}, T_{0}\right\rangle & =\int_{-1}^{1} \frac{1}{\left(1-x^{2}\right)^{1 / 2}} d x \\
& =\int_{-\pi}^{0}\left(-\frac{1}{\sin \theta}\right)-\sin \theta d \theta \tag{1.25}\\
& =0-(-\pi) \\
& =\pi
\end{align*}
$$

Note that since the $[-\pi, 0]$ interval was chosen, the negative root of $\sin ^{2} \theta=1-x^{2}$ was chosen, since $\sin \theta$ is negative in that interval.

The m, m inner product with $m \neq 0$ is

$$
\begin{align*}
\left\langle T_{m}, T_{m}\right\rangle & =\int_{-1}^{1} \frac{1}{\left(1-x^{2}\right)^{1 / 2}}\left(T_{m}(x)\right)^{2} d x \\
& =\int_{-\pi}^{0}\left(-\frac{1}{\sin \theta}\right) \cos ^{2}(m \theta)-\sin \theta d \theta \\
& =\int_{-\pi}^{0} \cos ^{2}(m \theta) d \theta \tag{1.26}\\
& =\frac{1}{2} \int_{-\pi}^{0}(\cos (2 m \theta)+1) d \theta \\
& =\frac{\pi}{2}
\end{align*}
$$

So far so good. For $m \neq n$ the inner product is

$$
\begin{align*}
\left\langle T_{m}, T_{m}\right\rangle & =\int_{-\pi}^{0} \cos (m \theta) \cos (n \theta) d \theta \\
& =\frac{1}{4} \int_{-\pi}^{0}\left(e^{j m \theta}+e^{-j m \theta}\right)\left(e^{j n \theta}+e^{-j n \theta}\right) d \theta \\
& =\frac{1}{4} \int_{-\pi}^{0}\left(e^{j(m+n) \theta}+e^{-j(m+n) \theta}+e^{j(m-n) \theta}+e^{j(-m+n) \theta}\right) d \theta \tag{1.27}\\
& =\frac{1}{2} \int_{-\pi}^{0}(\cos ((m+n) \theta)+\cos ((m-n) \theta)) d \theta \\
& =\left.\frac{1}{2}\left(\frac{\sin ((m+n) \theta)}{m+n}+\frac{\sin ((m-n) \theta)}{m-n}\right)\right|_{-\pi} ^{0} \\
& =0 . \quad \square
\end{align*}
$$

Bibliography

[1] M. Abramowitz and I.A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55. Dover publications, 1964. 1

