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Tschebyscheff polynomials

In ancient times (i.e. 2nd year undergrad) I recall being very impressed with Tschebyscheff poly-
nomials for designing lowpass filters. I’d used Tschebyscheff filters for the hardware we used for a
speech recognition system our group built in the design lab. One of the benefits of these polynomi-
als is that the oscillation in the |x| < 1 interval is strictly bounded. This same property, as well as
the unbounded nature outside of the [−1, 1] interval turns out to have applications to antenna array
design.

The Tschebyscheff polynomials are defined by

Tm(x) = cos
(

m cos−1 x
)

, |x| < 1 (1.1a)

Tm(x) = cosh
(

m cosh−1 x
)

, |x| > 1. (1.1b)

Range restrictions and hyperbolic form. Prof. Eleftheriades’s notes made a point to point out the def-
inition in the |x| > 1 interval, but that can also be viewed as a consequence instead of a definition if
the range restriction is removed. For example, suppose x = 7, and let

cos−1 7 = θ, (1.2)

so

(1.3)

7 = cos θ

=
eiθ + e−iθ

2
= cosh(iθ),

or

− i cosh−1 7 = θ. (1.4)

(1.5)Tm(7) = cos(−mi cosh−1 7)
= cosh(m cosh−1 7).

The same argument clearly applies to any other value outside of the |x| < 1 range, so without any
restrictions, these polynomials can be defined as just
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Tm(x) = cos
(

m cos−1 x
)

. (1.6)

Polynomial nature. Equation (1.6) does not obviously look like a polynomial. Let’s proceed to verify
the polynomial nature for the first couple values of m.

• m = 0.

(1.7)T0(x) = cos(0 cos−1 x)
= cos(0)
= 1.

• m = 1.

(1.8)T1(x) = cos(1 cos−1 x)
= x.

• m = 2.

(1.9)
T2(x) = cos(2 cos−1 x)

= 2 cos2 cos−1(x)− 1
= 2x2 − 1.

To examine the general case

(1.10)

Tm(x) = cos(m cos−1 x)

= Re ejm cos−1 x

= Re
(

ej cos−1 x
)m

= Re
(

cos cos−1 x + j sin cos−1 x
)m

= Re
(

x + j
√

1− x2
)m

= Re
(

xm +
(

m
1

)
jxm−1 (1− x2)1/2

−
(

m
2

)
xm−2 (1− x2)2/2 −

(
m
3

)
jxm−3 (1− x2)3/2

+
(

m
4

)
xm−4 (1− x2)4/2

+ · · ·
)

= xm −
(

m
2

)
xm−2 (1− x2) +

(
m
4

)
xm−4 (1− x2)2 − · · ·
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This expansion was a bit cavaliar with the signs of the sin cos−1 x =
√

1− x2 terms, since the
negative sign should be picked for the root when x ∈ [−1, 0]. However, that doesn’t matter in the
end since the real part operation selects only powers of two of this root.

The final result of the expansion above can be written

Tm(x) =
bm/2c

∑
k=0

(
m
2k

)
(−1)kxm−2k (1− x2)k

. (1.11)

This clearly shows the polynomial nature of these functions, and is also perfectly well defined for
any value of x. The even and odd alternation with m is also clear in this explicit expansion.

Some plots The first couple polynomials are plotted in fig. 1.1.

Figure 1.1: A couple Chebychev plots.

Properties In [1] a few properties can be found for these polynomials

Tm(x) = 2xTm−1 − Tm−2 (1.12a)

(1.12b)0 =
(
1− x2) dTm(x)

dx
+ mxTm(x)− mTm−1(x)

(1.12c)0 =
(
1− x2) d2Tm(x)

dx2 − x
dTm(x)

dx
+ m2Tm(x)

(1.12d)
∫ 1

−1

1√
1− x2

Tm(x)Tn(x)dx =


0 if m 6= n
π if m = n = 0
π/2 if m = n, m 6= 0
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Exercise 1.1 Recurrance relation.

Prove eq. (1.12a).

Answer for Exercise 1.1
To show this, let

x = cos θ. (1.13)

(1.14)2xTm−1 − Tm−2 = 2 cos θ cos((m − 1)θ)− cos((m − 2)θ).

Recall the cosine addition formulas

(1.15)

cos(a + b) = Re ej(a+b)

= Re ejaejb

= Re
(
cos a + j sin a

) (
cos b + j sin b

)
= cos a cos b − sin a sin b.

Applying this gives

2xTm−1 − Tm−2 = 2 cos θ

(
cos(mθ) cos θ + sin(mθ) sin θ

)
−
(

cos(mθ) cos(2θ) + sin(mθ) sin(2θ)

)

= 2 cos θ

(
cos(mθ) cos θ + sin(mθ) sin θ)

)

−
(

cos(mθ)(cos2 θ − sin2 θ) + 2 sin(mθ) sin θ cos θ

)
= cos(mθ)

(
cos2 θ + sin2 θ

)
= Tm(x). �

(1.16)

Exercise 1.2 First order LDE relation.

Prove eq. (1.12b).

Answer for Exercise 1.2
To show this, again, let

x = cos θ. (1.17)

Observe that

1 = − sin θ
dθ

dx
, (1.18)

so
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(1.19)

d
dx

=
dθ

dx
d
dθ

= − 1
sin θ

d
dθ

.

Plugging this in gives

(1.20)

(
1− x2) d

dx
Tm(x) + mxTm(x)− mTm−1(x)

= sin2 θ

(
− 1

sin θ

d
dθ

)
cos(mθ) + m cos θ cos(mθ)− m cos((m − 1)θ)

= − sin θ(−m sin(mθ)) + m cos θ cos(mθ)− m cos((m − 1)θ).

Applying the cosine addition formula eq. (1.15) gives

(1.21)m (sin θ sin(mθ) + cos θ cos(mθ))− m (cos(mθ) cos θ + sin(mθ) sin θ) = 0. �

Exercise 1.3 Second order LDE relation.

Prove eq. (1.12c).
Answer for Exercise 1.3

This follows the same way. The first derivative was

(1.22)

dTm(x)
dx

= − 1
sin θ

d
dθ

cos(mθ)

= − 1
sin θ

(−m) sin(mθ)

= m
1

sin θ
sin(mθ),

so the second derivative is

(1.23)

d2Tm(x)
dx2 = −m

1
sin θ

d
dθ

1
sin θ

sin(mθ)

= −m
1

sin θ

(
− cos θ

sin2 θ
sin(mθ) +

1
sin θ

m cos(mθ)
)

.

Putting all the pieces together gives

(1.24)

(
1− x2)d2Tm(x)

dx2 − x
dTm(x)

dx
+ m2Tm(x)

= m
(

cos θ

sin θ
sin(mθ)− m cos(mθ)

)
− cos θm

1
sin θ

sin(mθ) + m2 cos(mθ)

= 0. �
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Exercise 1.4 Orthogonality relation

Prove eq. (1.12d).

Answer for Exercise 1.4
First consider the 0,0 inner product, making an x = cos θ, so that dx = − sin θdθ

(1.25)

〈T0, T0〉 =
∫ 1

−1

1(
1− x2

)1/2
dx

=
∫ 0

−π

(
− 1

sin θ

)
− sin θdθ

= 0− (−π)
= π.

Note that since the [−π, 0] interval was chosen, the negative root of sin2 θ = 1− x2 was chosen,
since sin θ is negative in that interval.

The m,m inner product with m 6= 0 is

(1.26)

〈Tm, Tm〉 =
∫ 1

−1

1(
1− x2

)1/2
(Tm(x))2 dx

=
∫ 0

−π

(
− 1

sin θ

)
cos2(mθ)− sin θdθ

=
∫ 0

−π
cos2(mθ)dθ

=
1
2

∫ 0

−π
(cos(2mθ) + 1) dθ

=
π

2
.

So far so good. For m 6= n the inner product is

(1.27)

〈Tm, Tm〉 =
∫ 0

−π
cos(mθ) cos(nθ)dθ

=
1
4

∫ 0

−π

(
ejmθ + e−jmθ

) (
ejnθ + e−jnθ

)
dθ

=
1
4

∫ 0

−π

(
ej(m+n)θ + e−j(m+n)θ + ej(m−n)θ + ej(−m+n)θ

)
dθ

=
1
2

∫ 0

−π
(cos((m + n)θ) + cos((m − n)θ)) dθ

=
1
2

(
sin((m + n)θ)

m + n
+

sin((m − n)θ)
m − n

)∣∣∣∣0
−π

= 0. �
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