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Maxwell equation boundary conditions in media

Following [1], Maxwell’s equations in media, including both electric and magnetic sources and cur-
rents are

(1.1a)∇ × E = −M − ∂tB

(1.1b)∇ ×H = J + ∂tD

(1.1c)∇ ·D = ρ

(1.1d)∇ · B = ρm

In general, it is not possible to assemble these into a single Geometric Algebra equation unless
specific assumptions about the permeabilities are made, but we can still use Geometric Algebra to
examine the boundary condition question. First, these equations can be expressed in a more natural
multivector form

(1.2a)∇ ∧ E = −I (M + ∂tB)

(1.2b)∇ ∧H = I (J + ∂tD)

(1.2c)∇ ·D = ρ

(1.2d)∇ · B = ρm

Then duality relations can be used on the divergences to write all four equations in their curl form

(1.3a)∇ ∧ E = −I (M + ∂tB)

(1.3b)∇ ∧H = I (J + ∂tD)

(1.3c)∇ ∧ (ID) = ρI
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Figure 1.1: Two surfaces normal to the interface.

Figure 1.2: A pillbox volume encompassing the interface.

(1.3d)∇ ∧ (IB) = ρm I.

Now it is possible to employ Stokes theorem to each of these. The usual procedure is to both use
the loops of fig. 1.1 and the pillbox of fig. 1.2 , where in both cases the height is made infinitesimal.

With all these relations expressed in curl form as above, we can use just the pillbox configuration
to evaluate the Stokes integrals. Let the height h be measured along the normal axis, and assume that
all the charges and currents are localized to the surface

(1.4)

M = Msδ(h)
J = Jsδ(h)
ρ = ρsδ(h)

ρm = ρmsδ(h),

we can enumerate the Stokes integrals
∫

d3x · (∇ ∧ X) =
∮

∂V d2x ·X. The three-volume area element
will be written as d3x = d2x ∧ n̂dh, giving

(1.5a)
∮

∂V
d2x · E = −

∫
(d2x ∧ n̂) · (IMs + ∂t IB∆h)

(1.5b)
∮

∂V
d2x ·H =

∫
(d2x ∧ n̂) · (IJs + ∂t ID∆h)
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(1.5c)
∮

∂V
d2x · (ID) =

∫
(d2x ∧ n̂) ·

(
ρs I
)

(1.5d)
∮

∂V
d2x · (IB) =

∫
(d2x ∧ n̂) ·

(
ρms I

)
In the limit with ∆h → 0, the LHS integrals are reduced to just the top and bottom surfaces, and

the ∆h contributions on the RHS are eliminated. With i = In̂, and d2x = dA i on the top surface, we
are left with

(1.6a)0 =
∫

dA (i · ∆E + I · (IMs))

(1.6b)0 =
∫

dA (i · ∆H − I · (IJs))

(1.6c)0 =
∫

dA
(
i · ∆(ID) + ρs

)
(1.6d)0 =

∫
dA
(
i · ∆(IB) + ρms

)
Consider the first integral. Any component of E that is normal to the plane of the pillbox top (or

bottom) has no contribution to the integral, so this constraint is one that effects only the tangential
components n̂(n̂ ∧ (∆E)). Writing out the vector portion of the integrand, we have

(1.7)

i · ∆E + I · (IMs) =
〈
i∆E + I2Ms

〉
1

= 〈In̂∆E −Ms〉1
= 〈In̂n̂(n̂ ∧ ∆E)−Ms〉1
= 〈I(n̂ ∧ (∆E))−Ms〉1
= 〈−n̂ × (∆E)−Ms〉1.

The dot product (a scalar) in the two surface charge integrals can also be reduced

(1.8)

i · ∆(ID) = 〈i∆(ID)〉
= 〈In̂∆(ID)〉
= 〈−n̂∆D〉
= −n̂ · ∆D,

so the integral equations are satisfied provided

n̂× (E2 − E1) = −Ms

n̂× (H2 −H1) = Js

n̂ · (D2 −D1) = ρs

n̂ · (B2 − B1) = ρms.

(1.9)

It is tempting to try to assemble these into a results expressed in terms of a four-vector surface
current and composite STA bivector fields like the F = E + IcB that we can use for the free space
Maxwell’s equation. Dimensionally, we need something with velocity in that mix, but what velocity
should be used when the speed of the field propagation in each media is potentially different?
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