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Jackson’s electrostatic self energy analysis

Motivation I was reading my Jackson [1], which characteristically had the statement “the [...] inte-
gral can easily be shown to have the value 4π”, in a discussion of electrostatic energy and self energy.
After a few attempts and a couple of pages of calculations, I figured out how this can be easily shown.

Context Let me walk through the context that leads to the “easy” integral, and then the evaluation
of that integral. Unlike my older copy of Jackson, I’ll do this in SI units.

The starting point is a statement that the work done (potential energy) of one charge qi in a set of
n charges, where that charge is brought to its position xi from infinity, is

(1.1)Wi = qiΦ(xi),

where the potential energy due to the rest of the charge configuration is

(1.2)Φ(xi) =
1

4πε ∑
i 6=j

qj∣∣xi − xj
∣∣ .

This means that the total potential energy, making sure not to double count, to move all the charges
in from infinity is

(1.3)W =
1

4πε ∑
1≤i<j≤n

qiqj∣∣xi − xj
∣∣ .

This sum over all unique pairs is somewhat unwieldy, so it can be adjusted by explicitly double
counting with a corresponding divide by two

(1.4)W =
1
2

1
4πε ∑

1≤i 6=j≤n

qiqj∣∣xi − xj
∣∣ .

The point that causes the trouble later is the continuum equivalent to this relationship, which is

(1.5)W =
1

8πε

∫
ρ(x)ρ(x′)
|x − x′| d3xd3x′,

or
(1.6)W =

1
2

∫
ρ(x)Φ(x)d3x.

1



There’s a subtlety here that is often passed over. When the charge densities represent point charges
ρ(x) = qδ3(x − x′) are located at, notice that this integral equivalent is evaluated over all space, in-
cluding the spaces that the charges that the charges are located at.

Ignoring that subtlety, this potential energy can be expressed in terms of the electric field, and then
integrated by parts

(1.7)

W =
1
2

∫
(∇ · (εE))Φ(x)d3x

=
ε

2

∫
(∇ · (EΦ)− (∇Φ) · E) d3x

=
ε

2

∮
dAn̂ · (EΦ) +

ε

2

∫
E · Ed3x.

The presumption is that EΦ falls off as the bounds of the integration volume tends to infinity. That
leaves us with an energy density proportional to the square of the field

(1.8)w =
ε

2
E2.

Inconsistency It’s here that Jackson points out the inconsistency between eq. (1.8) and the original
discrete analogue eq. (1.4) that this was based on. The energy density is positive definite, whereas
the discrete potential energy can be negative if there is a difference in the sign of the charges.

Here Jackson uses a two particle charge distribution to help resolve this conundrum. For a super-
position E = E1 + E2, we have

(1.9)E =
1

4πε

q1(x − x1)

|x − x1|3
+

1
4πε

q2(x − x2)

|x − x2|3
,

so the energy density is

(1.10)w =
1

32π2ε

q2
1

|x − x1|4
+

1
32π2ε

q2
2

|x − x2|4
+ 2

q1q2

32π2ε

(x − x1)

|x − x1|3
· (x − x2)

|x − x2|3
.

The discrete potential had only an interaction energy, whereas the potential from this squared field
has an interaction energy plus two self energy terms. Those two strictly positive self energy terms
are what forces this field energy positive, independent of the sign of the interaction energy density.
Jackson makes a change of variables of the form

(1.11)
ρ = (x − x1)/R
R = |x1 − x2|
n̂ = (x1 − x2)/R,

for which we find

(1.12)x = x1 + Rρ,

so
(1.13)x − x2 = x1 − x2 + RρR(n̂ + ρ),
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and
(1.14)d3x = R3d3ρ,

so the total interaction energy is

(1.15)

Wint =
q1q2

16π2ε

∫
d3x

(x − x1)

|x − x1|3
· (x − x2)

|x − x2|3

=
q1q2

16π2ε

∫
R3d3ρ

Rρ

R3|ρ|3
· R(n̂ + ρ)

R3|n̂ + ρ|3

=
q1q2

16π2εR

∫
d3ρ

ρ

|ρ|3
· (n̂ + ρ)

|n̂ + ρ|3
.

Evaluating this integral is what Jackson calls easy. The technique required is to express the inte-
grand in terms of gradients in the ρ coordinate system

(1.16)

∫
d3ρ

ρ

|ρ|3
· (n̂ + ρ)

|n̂ + ρ|3
=
∫

d3ρ

(
−∇ρ

1
|ρ|

)
·
(
−∇ρ

1
|n̂ + ρ|

)
=
∫

d3ρ

(
∇ρ

1
|ρ|

)
·
(
∇ρ

1
|n̂ + ρ|

)
.

I found it somewhat non-trivial to find the exact form of the chain rule that is required to simplify
this integral, but after some trial and error, figured it out by working backwards from

(1.17)∇2
ρ

1
|ρ||n̂ + ρ| = ∇ρ ·

(
1
|ρ|∇ρ

1
|n̂ + ρ|

)
+ ∇ρ ·

(
1

|n̂ + ρ|∇ρ
1
|ρ|

)
.

In integral form this is

(1.18)

∮
dA′n̂′ ·∇ρ

1
|ρ||n̂ + ρ| =

∫
d3ρ′∇ρ′ ·

(
1

|ρ′ − n̂|∇ρ′
1
|ρ′|

)
+
∫

d3ρ∇ρ ·
(

1
|n̂ + ρ|∇ρ

1
|ρ|

)
=
∫

d3ρ′
(
∇ρ′

1
|ρ′ − n̂| ·∇ρ′

1
|ρ′|

)
+
∫

d3ρ′
1

|ρ′ − n̂|∇
2
ρ′

1
|ρ′|

+
∫

d3ρ

(
∇ρ

1
|n̂ + ρ|

)
·∇ρ

1
|ρ| +

∫
d3ρ

1
|n̂ + ρ|∇

2
ρ

1
|ρ|

= 2
∫

d3ρ

(
∇ρ

1
|n̂ + ρ|

)
·∇ρ

1
|ρ|

− 4π
∫

d3ρ′
1

|ρ′ − n̂|δ
3(ρ′)− 4π

∫
d3ρ

1
|ρ + n̂|δ

3(ρ)

= 2
∫

d3ρ

(
∇ρ

1
|n̂ + ρ|

)
·∇ρ

1
|ρ| − 8π.

This used the Laplacian representation of the delta function δ3(x) = −(1/4π)∇2(1/|x|). Back-
substitution gives
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(1.19)
∫

d3ρ
ρ

|ρ|3
· (n̂ + ρ)

|n̂ + ρ|3
= 4π +

∮
dA′n̂′ ·∇ρ

1
|ρ||n̂ + ρ| .

We can argue that this last integral tends to zero, since

(1.20)

∮
dA′n̂′ ·∇ρ

1
|ρ||n̂ + ρ| =

∮
dA′n̂′ ·

((
∇ρ

1
|ρ|

)
1

|n̂ + ρ| +
1
|ρ|

(
∇ρ

1
|n̂ + ρ|

))

= −
∮

dA′n̂′ ·

 ρ

1
|ρ|

3
1

|n̂ + ρ| +
1
|ρ|

(ρ + n̂)

|n̂ + ρ|3


= −

∮
dA′

1
|ρ||ρ + n̂|

(
n̂′ · ρ
|ρ|2

+
n̂′ · (ρ + n̂)

|ρ + n̂|2

)
.

The integrand in this surface integral is of O(1/ρ3) so tends to zero on an infinite surface in the ρ
coordinate system. This completes the “easy” integral, leaving

(1.21)
∫

d3ρ
ρ

|ρ|3
· (n̂ + ρ)

|n̂ + ρ|3
= 4π.

The total field energy can now be expressed as a sum of the self energies and the interaction energy

(1.22)W =
1

32π2ε

∫
d3x

q2
1

|x − x1|4
+

1
32π2ε

∫
d3x

q2
2

|x − x2|4
+

1
4πε

q1q2

|x1 − x2|
.

The interaction energy is exactly the potential energies for the two particles, the this total energy in
the field is biased in the positive direction by the pair of self energies. It is interesting that the energy
obtained from integrating the field energy density contains such self energy terms, but I don’t know
exactly what to make of them at this point in time.
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