Electric and magnetic fields at an interface

As pointed out in [1] the fields at an interface that is not a perfect conductor on either side are related by

$$
\begin{align*}
\hat{\mathbf{n}} \cdot\left(\mathbf{D}_{2}-\mathbf{D}_{1}\right) & =\rho_{e s} \\
\hat{\mathbf{n}} \times\left(\mathbf{E}_{2}-\mathbf{E}_{1}\right) & =-\mathbf{M}_{s} \\
\hat{\mathbf{n}} \cdot\left(\mathbf{B}_{2}-\mathbf{B}_{1}\right) & =\rho_{m s} \tag{1.1}\\
\hat{\mathbf{n}} \times\left(\mathbf{H}_{2}-\mathbf{H}_{1}\right) & =\mathbf{J}_{s} .
\end{align*}
$$

Given the fields in medium 1, assuming that boths sets of media are linear, we can use these relationships to determine the fields in the other medium.

$$
\begin{align*}
\hat{\mathbf{n}} \cdot \mathbf{E}_{2} & =\frac{1}{\epsilon_{2}}\left(\epsilon_{1} \hat{\mathbf{n}} \cdot \mathbf{E}_{1}+\rho_{e s}\right) \\
\hat{\mathbf{n}} \wedge \mathbf{E}_{2} & =\hat{\mathbf{n}} \wedge \mathbf{E}_{1}-I \mathbf{M}_{s} \\
\hat{\mathbf{n}} \cdot \mathbf{B}_{2} & =\hat{\mathbf{n}} \cdot \mathbf{B}_{1}+\rho_{m s} \tag{1.2}\\
\hat{\mathbf{n}} \wedge \mathbf{B}_{2} & =\mu_{2}\left(\frac{1}{\mu_{1}} \hat{\mathbf{n}} \wedge \mathbf{B}_{1}+I J_{s}\right) .
\end{align*}
$$

Now the fields in interface 2 can be obtained by adding the normal and tangential projections. For the electric field

$$
\begin{align*}
\mathbf{E}_{2} & =\hat{\mathbf{n}}\left(\hat{\mathbf{n}} \cdot \mathbf{E}_{2}\right)+\hat{\mathbf{n}} \cdot\left(\hat{\mathbf{n}} \wedge \mathbf{E}_{2}\right) \\
& =\frac{1}{\epsilon_{2}} \hat{\mathbf{n}}\left(\epsilon_{1} \hat{\mathbf{n}} \cdot \mathbf{E}_{1}+\rho_{e s}\right)+\hat{\mathbf{n}} \cdot\left(\hat{\mathbf{n}} \wedge \mathbf{E}_{1}-I \mathbf{M}_{s}\right) . \tag{1.3}
\end{align*}
$$

Expanding $\hat{\mathbf{n}} \cdot\left(\hat{\mathbf{n}} \wedge \mathbf{E}_{1}\right)=\mathbf{E}_{1}-\hat{\mathbf{n}}\left(\hat{\mathbf{n}} \cdot \mathbf{E}_{1}\right)$, and $\hat{\mathbf{n}} \cdot\left(I \mathbf{M}_{s}\right)=-\hat{\mathbf{n}} \times \mathbf{M}_{s}$, that is

$$
\begin{equation*}
\mathbf{E}_{2}=\mathbf{E}_{1}+\hat{\mathbf{n}}\left(\hat{\mathbf{n}} \cdot \mathbf{E}_{1}\right)\left(\frac{\epsilon_{1}}{\epsilon_{2}}-1\right)+\frac{\rho_{e s}}{\epsilon_{2}}+\hat{\mathbf{n}} \times \mathbf{M}_{s} \tag{1.4}
\end{equation*}
$$

For the magnetic field

$$
\begin{align*}
\mathbf{B}_{2} & =\hat{\mathbf{n}}\left(\hat{\mathbf{n}} \cdot \mathbf{B}_{2}\right)+\hat{\mathbf{n}} \cdot\left(\hat{\mathbf{n}} \wedge \mathbf{B}_{2}\right) \\
& =\hat{\mathbf{n}}\left(\hat{\mathbf{n}} \cdot \mathbf{B}_{1}+\rho_{m s}\right)+\mu_{2} \hat{\mathbf{n}} \cdot\left(\left(\frac{1}{\mu_{1}} \hat{\mathbf{n}} \wedge \mathbf{B}_{1}+I \mathbf{J}_{s}\right)\right), \tag{1.5}
\end{align*}
$$

which is

$$
\begin{equation*}
\mathbf{B}_{2}=\frac{\mu_{2}}{\mu_{1}} \mathbf{B}_{1}+\hat{\mathbf{n}}\left(\hat{\mathbf{n}} \cdot \mathbf{B}_{1}\right)\left(1-\frac{\mu_{2}}{\mu_{1}}\right)+\hat{\mathbf{n}} \rho_{m s}-\hat{\mathbf{n}} \times \mathbf{J}_{s} \tag{1.6}
\end{equation*}
$$

These are kind of pretty results, having none of the explicit angle dependence that we see in the Fresnel relationships. In this analysis, it is assumed there is only a transmitted component of the ray in question, and no reflected component. Can we do a purely vectoral treatment of the Fresnel equations along these same lines?

Bibliography

[1] Constantine A Balanis. Advanced engineering electromagnetics. Wiley New York, 1989. 1

