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Fundamental theorem of calculus

1.1 Stokes Theorem

The Fundamental Theorem of (Geometric) Calculus is a generalization of Stokes theorem to mul-
tivector integrals. Notationally, it looks like Stokes theorem with all the dot and wedge products
removed. It is worth restating Stokes theorem and all the definitions associated with it for reference

Theorem 1.1: Stokes’ Theorem

For blades F ∈ ∧s, and m volume element dkx, s < k,∫
V

dkx · (∂ ∧ F) =
∮

∂V
dk−1x · F.

This is a loaded and abstract statement, and requires many definitions to make it useful

• The volume integral is over a m dimensional surface (manifold).

• Integration over the boundary of the manifold V is indicated by ∂V.

• This manifold is assumed to be spanned by a parameterized vector x(u1, u2, · · · , uk).

• A curvilinear coordinate basis {xi} can be defined on the manifold by

xi ≡
∂x
∂ui ≡ ∂ix. (1.1)

• A dual basis
{

xi} reciprocal to the tangent vector basis xi can be calculated subject to the re-
quirement xi · xj = δ

j
i .

• The vector derivative ∂, the projection of the gradient onto the tangent space of the manifold,
is defined by

∂ = xi∂i =
k

∑
i=1

xi
∂

∂ui . (1.2)
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• The volume element is defined by

(1.3)dkx = dx1 ∧ dx2 · · · ∧ dxk,

where

(1.4)dxk = xkduk, (no sum).

• The volume element is non-zero on the manifold, or x1 ∧ · · · ∧ xk 6= 0.

• The surface area element dk−1x, is defined by

(1.5)dk−1x =
k

∑
i=1

(−1)k−idx1 ∧ dx2 · · · d̂xi · · · ∧ dxk,

where d̂xi indicates the omission of dxi.

• My proof for this theorem was restricted to a simple “rectangular” volume parameterized by
the ranges [u1(0), u1(1)]⊗ [u2(0), u2(1)]⊗ · · · ⊗ [uk(0), uk(1)]

• The precise meaning that should be given to oriented area integral is

(1.6)
∮

∂V
dk−1x · F =

k

∑
i=1

(−1)k−i
∫ ((

dx1 ∧ dx2 · · · d̂xi · · · ∧ dxk

)
· F
)∣∣∣ui(1)

ui=ui(0)
,

where both the a area form and the blade F are evaluated at the end points of the parameteri-
zation range.

After the work of stating exactly what is meant by this theorem, most of the proof follows from the
fact that for s < k the volume curl dot product can be expanded as

(1.7)

∫
V

dkx · (∂ ∧ F) =
∫

V
dkx · (xi ∧ ∂iF)

=
∫

V

(
dkx · xi

)
· ∂iF.

Each of the dui integrals can be evaluated directly, since each of the remaining dxj = duj∂/∂uj, i 6= j
is calculated with ui held fixed. This allows for the integration over a “rectangular” parameterization
region, proving the theorem for such a volume parameterization. A more general proof requires a
triangulation of the volume and surface, but the basic principle of the theorem is evident, without
that additional work.
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1.2 Fundamental Theorem of Calculus

There is a Geometric Algebra generalization of Stokes theorem that does not have the blade grade
restriction of Stokes theorem. In [2] this is stated as

(1.8)
∫

V
dkx∂F =

∮
∂V

dk−1xF.

A similar expression is used in [1] where it is also pointed out there is a variant with the vector
derivative acting to the left

(1.9)
∫

V
Fdkx∂ =

∮
∂V

Fdk−1x.

In [3] it is pointed out that a bidirectional formulation is possible, providing the most general
expression of the Fundamental Theorem of (Geometric) Calculus∫

V
Fdkx∂G =

∮
∂V

Fdk−1xG. (1.10)

Here the vector derivative acts both to the left and right on F and G. The specific action of this
operator is

(1.11)F∂G = (F∂)G + F(∂G)
= (∂iF)xiG + Fxi(∂iG).

The fundamental theorem can be demonstrated by direct expansion. With the vector derivative ∂
and its partials ∂i acting bidirectionally, that is

(1.12)

∫
V

Fdkx∂G =
∫

V
Fdkxxi∂iG

=
∫

V
F
(

dkx · xi + dkx ∧ xi
)

∂iG.

Both the reciprocal frame vectors and the curvilinear basis span the tangent space of the manifold,
since we can write any reciprocal frame vector as a set of projections in the curvilinear basis

(1.13)xi = ∑
j

(
xi · xj

)
xj,

so xi ∈ span
{

xj, j ∈ [1, k]
}

. This means that dkx ∧ xi = 0, and

(1.14)

∫
V

Fdkx∂G =
∫

V
F
(

dkx · xi
)

∂iG

=
k

∑
i=1

∫
V

du1du2 · · · d̂ui · · · dukF
(

(−1)k−ix1 ∧ x2 · · · x̂i · · · ∧ xk

)
∂iGdui

=
k

∑
i=1

(−1)k−i
∫

u1

∫
u2
· · ·

∫
ui−1

∫
ui+1
· · ·

∫
uk

(
Fdx1 ∧ dx2 · · · d̂xi · · · ∧ dxkG

)∣∣∣ui(1)

ui=ui(0)
.

Adding in the same notational sugar that we used in Stokes theorem, this proves the Fundamental
theorem eq. (1.10) for “rectangular” parameterizations. Note that such a parameterization need not
actually be rectangular.
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Example 1.1: Application to Maxwell’s equation

Maxwell’s equation is an example of a first order gradient equation

(1.15)∇F =
1

ε0c
J.

Integrating over a four-volume (where the vector derivative equals the gradient), and apply-
ing the Fundamental theorem, we have

(1.16)
1

ε0c

∫
d4xJ =

∮
d3xF.

Observe that the surface area element product with F has both vector and trivector terms. This
can be demonstrated by considering some examples

(1.17)
γ012γ01 ∝ γ2

γ012γ23 ∝ γ023.

On the other hand, the four volume integral of J has only trivector parts. This means that the
integral can be split into a pair of same-grade equations

(1.18)

1
ε0c

∫
d4x · J =

∮ 〈
d3xF

〉
3

0 =
∮

d3x · F.

The first can be put into a slightly tidier form using a duality transformation

(1.19)

〈
d3xF

〉
3 = −

〈
d3xI2F

〉
3

=
〈

Id3xIF
〉

3

= (Id3x) ∧ (IF).

Letting n
∣∣d3x

∣∣ = Id3x, this gives

(1.20)
∮ ∣∣d3x

∣∣n ∧ (IF) =
1

ε0c

∫
d4x · J.

Note that this normal is normal to a three-volume subspace of the spacetime volume. For ex-
ample, if one component of that spacetime surface area element is γ012cdtdxdy, then the normal
to that area component is γ3.

A second set of duality transformations
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(1.21)

n ∧ (IF) = 〈nIF〉3
= −〈InF〉3
= −〈I(n · F)〉3
= −I(n · F),

and

(1.22)

Id4x · J =
〈

Id4x · J
〉

1

=
〈

Id4xJ
〉

1

=
〈

(Id4x)J
〉

1

= (Id4x)J,

can further tidy things up, leaving us with

∮ ∣∣d3x
∣∣n · F =

1
ε0c

∫
(Id4x)J∮

d3x · F = 0.
(1.23)

The Fundamental theorem of calculus immediately provides relations between normal projec-
tions of the Faraday bivector F and the four-current J, as well as boundary value constraints on
F coming from the source free components of Maxwell’s equation.
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