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Green’s function for the gradient in Euclidean spaces.

In [1] it is stated that the Green’s function for the gradient is

(1.1)G(x, x′) =
1

Sn

x − x′

|x − x′|n
,

where n is the dimension of the space, Sn is the area of the unit sphere, and

∇G = ∇ · G = δ(x− x′). (1.2)

What I’d like to do here is verify that this Green’s function operates as asserted. Here, as in some
parts of the text, I am following a convention where vectors are written without boldface.

Let’s start with checking that the gradient of the Green’s function is zero everywhere that x 6= x′

(1.3)

∇ 1
|x − x′|n

= −n
2

eν∂ν(xµ − x′µ)(xµ − xµ ′)

|x − x′|n+2

= −n
2

2
eν(xµ − x′µ)δµ

ν

|x − x′|n+2

= −n
x − x′

|x − x′|n+2 .

This means that we have, everywhere that x 6= x′

(1.4)

∇ · G =
1

Sn

(
∇ ·

(
x − x′

)
|x − x′|n

+
(
∇ 1
|x − x′|n

)
·
(
x − x′

))

=
1

Sn

(
n

|x − x′|n
+

(
−n

x − x′

|x − x′|n+2 ·
(
x − x′

)))
= 0.

Next, consider the curl of the Green’s function. Zero curl will mean that we have∇G = ∇·G = G
←
∇.
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(1.5)
Sn(∇ ∧ G) =

∇ ∧ (x − x′)
|x − x′|n

+∇ 1
|x − x′|n

∧ (x − x′)

=
∇ ∧ (x − x′)
|x − x′|n

−
�����������

n
x − x′

|x − x′|n
∧ (x − x′).

However,

(1.6)

∇ ∧ (x − x′) = ∇ ∧ x
= eµ ∧ eν∂µxν

= eµ ∧ eνδν
µ

= eµ ∧ eµ.

For any metric where eµ ∝ eµ, which is the case in all the ones with physical interest (i.e. R3 and
Minkowski space), ∇∧ G is zero.

Having shown that the gradient of the (presumed) Green’s function is zero everywhere that x 6= x′,
the guts of the demonstration can now proceed. We wish to evaluate the gradient weighted convo-
lution of the Green’s function using the Fundamental Theorem of (Geometric) Calculus. Here the
gradient acts bidirectionally on both the gradient and the test function. Working in primed coordi-
nates so that the final result is in terms of the unprimed, we have

(1.7)
∫

V
G(x, x′)dnx′

↔
∇
′
F(x′) =

∫
∂V

G(x, x′)dn−1x′F(x′).

Let dnx′ = dV ′ I, dn−1x′n = dA′ I, where n = n(x′) is the outward normal to the area element dn−1x′.
From this point on, lets restrict attention to Euclidean spaces, where n2 = 1. In that case

(1.8)

∫
V

dV ′G(x, x′)
↔
∇
′
F(x′) =

∫
V

dV ′
(

G(x, x′)
←
∇
′)

F(x′) +
∫

V
dV ′G(x, x′)

(
→
∇
′
F(x′)

)
=
∫

∂V
dA′G(x, x′)nF(x′).

Here, the pseudoscalar I has been factored out by commuting it with G, using GI = (−1)n−1 IG,
and then pre-multiplication with 1/((−1)n−1 I).

Each of these integrals can be considered in sequence. A convergence bound is required of the
multivector test function F(x′) on the infinite surface ∂V. Since it’s true that

(1.9)
∣∣∣∣∫

∂V
dA′G(x, x′)nF(x′)

∣∣∣∣ ≥ ∫
∂V

dA′
∣∣G(x, x′)nF(x′)

∣∣,
then it is sufficient to require that

(1.10)lim
x′ →∞

∣∣∣∣ x − x′

|x − x′|n
n(x′)F(x′)

∣∣∣∣→ 0,

in order to kill off the surface integral. Evaluating the integral on a hypersphere centred on x where
x′ − x = n|x− x′|, that is
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(1.11)lim
x′ →∞

|F(x′)|
|x − x′|n−1 → 0.

Given such a constraint, that leaves

(1.12)
∫

V
dV ′

(
G(x, x′)

←
∇
′)

F(x′) = −
∫

V
dV ′G(x, x′)

(
→
∇
′
F(x′)

)
.

The LHS is zero everywhere that x 6= x′ so it can be restricted to a spherical ball around x, which al-
lows the test function F to be pulled out of the integral, and a second application of the Fundamental
Theorem to be applied.

(1.13)

∫
V

dV ′
(

G(x, x′)
←
∇
′)

F(x′) = lim
ε→0

∫
|x−x′|<ε

dV ′
(

G(x, x′)
←
∇
′)

F(x′)

=
(

lim
ε→0

I−1
∫
|x−x′|<ε

IdV ′
(

G(x, x′)
←
∇
′))

F(x)

=
(

lim
ε→0

(−1)n−1 I−1
∫
|x−x′|<ε

G(x, x′)dnx′
←
∇
′)

F(x)

=
(

lim
ε→0

(−1)n−1 I−1
∫
|x−x′|=ε

G(x, x′)dn−1x′
)

F(x)

=
(

lim
ε→0

(−1)n−1 I−1
∫
|x−x′|=ε

G(x, x′)dA′ In
)

F(x)

=
(

lim
ε→0

∫
|x−x′|=ε

dA′G(x, x′)n
)

F(x)

=
(

lim
ε→0

∫
|x−x′|=ε

dA′
ε(−n)
Snεn n

)
F(x)

= − lim
ε→0

F(x)
Snεn−1

∫
|x−x′|=ε

dA′

= − lim
ε→0

F(x)
Snεn−1 Snεn−1

= −F(x).

This essentially calculates the divergence integral around an infinitesimal hypersphere, without
assuming that the gradient commutes with the gradient in this infinitesimal region. So, provided the
test function is constrained by eq. (1.11), we have

(1.14)F(x) =
∫

V
dV ′G(x, x′)

(
∇′F(x′)

)
.

In particular, should we have a first order gradient equation

(1.15)∇′F(x′) = M(x′),

the inverse of this equation is given by

F(x) =
∫

V
dV ′G(x, x′)M(x′). (1.16)
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Note that the sign of the Green’s function is explicitly tied to the definition of the convolution
integral that is used. This is important since since the conventions for the sign of the Green’s function
or the parameters in the convolution integral often vary.

What’s cool about this result is that it applies not only to gradient equations in Euclidean spaces,
but also to multivector (or even just vector) fields F, instead of the usual scalar functions that we
usually apply Green’s functions to.

Example 1.1: Electrostatics

As a check of the sign consider the electrostatics equation

(1.17)∇E =
ρ

ε0
,

for which we have after substitution into eq. (1.16)

(1.18)E(x) =
1

4πε0

∫
V

dV ′
x − x′

|x − x′|3
ρ(x′).

This matches the sign found in a trusted reference such as [2].

Future thought. Does this Green’s function also work for mixed metric spaces? If so, in such a
metric, what does it mean to calculate the surface area of a unit sphere in a mixed signature space?
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