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Helmholtz theorem

This is a problem from ecel228. I attempted solutions in a number of ways. One using Geometric
Algebra, one devoid of that algebra, and then this method, which combined aspects of both. Of
the three methods I tried to obtain this result, this is the most compact and elegant. It does however,
require a fair bit of Geometric Algebra knowledge, including the Fundamental Theorem of Geometric
Calculus, as detailed in [1], [3] and [2].

Exercise 1.1 Helmholtz theorem

Prove the first Helmholtz’s theorem, i.e. if vector M is defined by its divergence
V-M=s (1.1)
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within a region and its normal component M;, over the boundary, then M is uniquely specified.
Answer for Exercise 1.1
The gradient of the vector M can be written as a single even grade multivector

VM=V -M+IV xM-=s+IC. (1.3)

We will use this to attempt to discover the relation between the vector M and its divergence and
curl. We can express M at the point of interest as a convolution with the delta function at all other
points in space

M(x) = /V AV'5(x — X)M(X). (1.4)

The Laplacian representation of the delta function in R is
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so M can be represented as the following convolution
M(x) = — / V'V M) (1.6)
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Using this relation and proceeding with a few applications of the chain rule, plus the fact that
V1/|x — x| = =V'1/|x — x|, we find
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By inserting a no-op grade selection operation in the second step, the trivector terms that would
show up in subsequent steps are automatically filtered out. This leaves us with a boundary term
dependent on the surface and the normal and tangential components of M. Added to that is a pair
of volume integrals that provide the unique dependence of M on its divergence and curl. When
the surface is taken to infinity, which requires |M|/|x — x| — 0, then the dependence of M on its
divergence and curl is unique.

In order to express final result in traditional vector algebra form, a couple transformations are
required. The first is that

<aIb>1 =TPaxb (1.8)
=—axb.

For the grade selection in the boundary integral, note that

(VaX), = (V(f - X)), + (V(A A X)),
= V(h-X)+ (VIH x X)), (1.9)
=V@H-X) -V x (a xX).

These give
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