Peeter Joot
 peeterjoot@protonmail.com

Helmholtz theorem

This is a problem from ece1228. I attempted solutions in a number of ways. One using Geometric Algebra, one devoid of that algebra, and then this method, which combined aspects of both. Of the three methods I tried to obtain this result, this is the most compact and elegant. It does however, require a fair bit of Geometric Algebra knowledge, including the Fundamental Theorem of Geometric Calculus, as detailed in [1], [3] and [2].

Exercise 1.1 Helmholtz theorem

Prove the first Helmholtz's theorem, i.e. if vector \mathbf{M} is defined by its divergence

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{M}=s \tag{1.1}
\end{equation*}
$$

and its curl

$$
\begin{equation*}
\boldsymbol{\nabla} \times \mathbf{M}=\mathbf{C} \tag{1.2}
\end{equation*}
$$

within a region and its normal component \mathbf{M}_{n} over the boundary, then \mathbf{M} is uniquely specified.

Answer for Exercise 1.1

The gradient of the vector \mathbf{M} can be written as a single even grade multivector

$$
\begin{equation*}
\boldsymbol{\nabla} \mathbf{M}=\boldsymbol{\nabla} \cdot \mathbf{M}+I \boldsymbol{\nabla} \times \mathbf{M}=s+I \mathbf{C} . \tag{1.3}
\end{equation*}
$$

We will use this to attempt to discover the relation between the vector \mathbf{M} and its divergence and curl. We can express \mathbf{M} at the point of interest as a convolution with the delta function at all other points in space

$$
\begin{equation*}
\mathbf{M}(\mathbf{x})=\int_{V} d V^{\prime} \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \mathbf{M}\left(\mathbf{x}^{\prime}\right) . \tag{1.4}
\end{equation*}
$$

The Laplacian representation of the delta function in \mathbb{R}^{3} is

$$
\begin{equation*}
\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=-\frac{1}{4 \pi} \nabla^{2} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{\prime}}, \tag{1.5}
\end{equation*}
$$

so \mathbf{M} can be represented as the following convolution

$$
\begin{equation*}
\mathbf{M}(\mathbf{x})=-\frac{1}{4 \pi} \int_{V} d V^{\prime} \nabla^{2} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathbf{M}\left(\mathbf{x}^{\prime}\right) . \tag{1.6}
\end{equation*}
$$

Using this relation and proceeding with a few applications of the chain rule, plus the fact that $\nabla 1 /\left|\mathbf{x}-\mathbf{x}^{\prime}\right|=-\nabla^{\prime} 1 /\left|\mathbf{x}-\mathbf{x}^{\prime}\right|$, we find

$$
\begin{align*}
-4 \pi \mathbf{M}(\mathbf{x}) & =\int_{V} d V^{\prime} \nabla^{2} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathbf{M}\left(\mathbf{x}^{\prime}\right) \\
& =\left\langle\int_{V} d V^{\prime} \nabla^{2} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathbf{M}\left(\mathbf{x}^{\prime}\right)\right\rangle_{1} \\
& =-\left\langle\int_{V} d V^{\prime} \nabla\left(\nabla^{\prime} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right) \mathbf{M}\left(\mathbf{x}^{\prime}\right)\right\rangle_{1} \tag{1.7}\\
& =-\left\langle\boldsymbol{\nabla} \int_{V} d V^{\prime}\left(\nabla^{\prime} \frac{\mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}-\frac{\nabla^{\prime} \mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right)\right\rangle_{1} \\
& =-\left\langle\boldsymbol{\nabla} \int_{\partial V} d A^{\prime} \hat{\mathbf{n}} \frac{\mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\mid \mathbf{x - \mathbf { x } ^ { \prime } |}}\right\rangle_{1}+\left\langle\boldsymbol{\nabla} \int_{V} d V^{\prime} \frac{s\left(\mathbf{x}^{\prime}\right)+I \mathbf{C}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right\rangle_{1} \\
& =-\left\langle\boldsymbol{\nabla} \int_{\partial V} d A^{\prime} \hat{\mathbf{n}} \frac{\mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\mid \mathbf{x - \mathbf { x } ^ { \prime } |}}\right\rangle_{1}+\nabla \int_{V} d V^{\prime} \frac{s\left(\mathbf{x}^{\prime}\right)}{\mid \mathbf{x - \mathbf { x } ^ { \prime } |}}+\nabla \cdot \int_{V} d V^{\prime} \frac{I \mathbf{C}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} .
\end{align*}
$$

By inserting a no-op grade selection operation in the second step, the trivector terms that would show up in subsequent steps are automatically filtered out. This leaves us with a boundary term dependent on the surface and the normal and tangential components of \mathbf{M}. Added to that is a pair of volume integrals that provide the unique dependence of \mathbf{M} on its divergence and curl. When the surface is taken to infinity, which requires $|\mathbf{M}| /\left|\mathbf{x}-\mathbf{x}^{\prime}\right| \rightarrow 0$, then the dependence of \mathbf{M} on its divergence and curl is unique.

In order to express final result in traditional vector algebra form, a couple transformations are required. The first is that

$$
\begin{align*}
\langle\mathbf{a} I \mathbf{b}\rangle_{1} & =I^{2} \mathbf{a} \times \mathbf{b} \tag{1.8}\\
& =-\mathbf{a} \times \mathbf{b} .
\end{align*}
$$

For the grade selection in the boundary integral, note that

$$
\begin{align*}
\langle\nabla \hat{\mathbf{n}} \mathbf{X}\rangle_{1} & =\langle\nabla(\hat{\mathbf{n}} \cdot \mathbf{X})\rangle_{1}+\langle\boldsymbol{\nabla}(\hat{\mathbf{n}} \wedge \mathbf{X})\rangle_{1} \\
& =\nabla(\hat{\mathbf{n}} \cdot \mathbf{X})+\langle\boldsymbol{}+\boldsymbol{\nabla}(\hat{\mathbf{n}} \times \mathbf{X})\rangle_{1} \tag{1.9}\\
& =\nabla(\hat{\mathbf{n}} \cdot \mathbf{X})-\boldsymbol{\nabla} \times(\hat{\mathbf{n}} \times \mathbf{X}) .
\end{align*}
$$

These give

$$
\begin{align*}
\mathbf{M}(\mathbf{x}) & =\nabla \frac{1}{4 \pi} \int_{\partial V} d A^{\prime} \hat{\mathbf{n}} \cdot \frac{\mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}-\nabla \times \frac{1}{4 \pi} \int_{\partial V} d A^{\prime} \hat{\mathbf{n}} \times \frac{\mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \tag{1.10}\\
& -\nabla \frac{1}{4 \pi} \int_{V} d V^{\prime} \frac{s\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}+\nabla \times \frac{1}{4 \pi} \int_{V} d V^{\prime} \frac{\mathbf{C}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
\end{align*}
$$

Bibliography

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003. 1
[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012. 1
[3] Garret Sobczyk and Omar León Sánchez. Fundamental theorem of calculus. Advances in Applied Clifford Algebras, 21(1):221-231, 2011. URL http://arxiv .org/abs/0809.4526. 1

