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Laplacian in cylindrical coordinates

In class it was suggested that the identity

(1.1)

VZA=V(V-A)—V x(V xA),

can be used to compute the Laplacian in non-rectangular coordinates. Is that the easiest way to do

How about just sequential applications of the gradient on the vector? Let’s start with the vector

this?
product of the gradient and the vector. First recall that the cylindrical representation of the gradient

is
V =po, + ;84, + 20, (1.2)
where . 1026
p = ee
¢ = epe®1e2? (1.3)
(1.4)

Taking ¢ derivatives of eq. (1.3), we have

dpp = e1e1e2e12? = e¢®12? =

dpP = ere1exe? = —eq®1%2% =

The gradient of a vector A = pA, + pAy +2A; is

N

_p'



VA= (pap + Z’aq, + zaz> (PAp + PAy +2A;)

= P9y (pAs+ b+ 2A)

p

+2 (p0-Ap + §3-Ap + 20, Az)
0pAp + PP, Ay + P20, A,

1 . . .
s (Ap + §pIp Ay — PpAy +0pAp + P20 As)

+2p0: A, +2¢0.Ag +0-A;

dpAp + ; (Ap+09gpAp) +0-A;
+2p (04, — 9pA:)
+ ¢z (:)aq,Az - BZA¢>
A 1
+p (3PA¢ — 5 (Op4 - A¢)> :
As expected, we see that the gradient splits nicely into a dot and curl

VA=V -A+VAA=V -A+ppz(V x A),

where the cylindrical representation of the divergence is seen to be
1 1
VA= -0,(0Ap) + —0pAp +0;A;,
p P
and the cylindrical representation of the curl is

1 » 1
V x A= p <p8¢AZ — azA¢> + ¢ (azA‘g — apAz) + 52 (ap(pA¢) — 8¢AP) .

(1.5)

(1.6)

(1.7)

(1.8)

Should we want to, it is now possible to evaluate the Laplacian of A using eq. (1.1) , which will

have the following components



Y
=9, (:)ap(pAp)>+ap (;a¢A¢)+apzAZ Pa¢p(pA¢)+ a¢¢A +02:Ap — 0zpA;
1 1 1
=9 (a(A)>+a A, +0,A, — —0p,A +fa A ——aA —fa A
pppPp p2¢¢p sz¢¢pp¢¢p2¢¢p¢P¢
1 1 2
=0p (ap(PAp)> + 30ppAp +022Ap — 09 Ay
Y Y Y
1 1 A 2
= =9, (00, Ap) + =509 Ay + 02 A, — —F — Z9,A4,
pP(pPP) pz¢¢p P 02 p2¢¢

(1.9a)

. 1. (1 1
- (V) = J% <pap(pAp) * 20+ aZAZ>

R (o))

1 1 1 1 1 1
= —0po(0Ap) + 50ppAp + —0pz Az — —029A; + 0, Ap + 0 (a(A)>—a <8A>
P2<PPPP p2¢¢¢p¢ p<P ¢ PPPP¢ PP¢P
=dp <1a(pA)>+1a A+8A+l8 (pA)+la A—la A, —9 (18A>
PP ¢ p2¢¢¢ Zz¢p2¢P P p<PZZpZ¢Z prPP
= < (pA)>+18 A+8A+l8A+18 A+laA—la A
P ¢ p2¢¢¢ Zz¢p2¢PP¢PPP2¢PPP¢P
1 2
< P(pA(P)> + ;8¢¢A¢ + azzA(p + Ea(pAp

1 2 Ay
= -9, (00,A +7a Ap +0,,Ap + —=0pA, — —,
pp(szp) 52000 A+ 0 Ap + 50040 =

(1.9b)

1 1 1 1
2-(V?A) =0. <pap(pAp) + 204+ BZAZ> -5 <ap (0 (34, — 9,Az)) — 3y <P8¢AZ - aZA4,>>

1 1 1 1 1 1
= —0,(0Ap) + —0,9Ap + 0:,A; — —0, (00;A,) + =0, (00,A;) + —0ppA; — —0yp, A
pﬂpﬂ p4>4> pp(P p) pﬂ(Pﬂ ) pz4>¢ p(l’ ¢

1 1 1 1 1 1
= *ap (pé)pAz) + 78¢¢AZ + 8ZZAZ + *azAp + aszp + 782¢A¢ — *azAp — 8pzAp — *atpzA(p
P P P P P P
= ‘[];ap (papAz) + ;a¢¢AZ + aZZAZ
(1.9¢)

Evaluating these was a fairly tedious and mechanical job, and would have been better suited to a
computer algebra system than by hand as done here.



Explicit cylindrical Laplacian  Let’s try this a different way. The most obvious potential strategy is
to just apply the Laplacian to the vector itself, but we need to include the unit vectors in such an
operation

V2A = V2 (pA, + Ay +2A,) . (1.10)

First we need to know the explicit form of the cylindrical Laplacian. From the painful expansion,
we can guess that it is

1 1
Vi = Eap (09p9) + an,u + 0229, (1.11)

Let’s check that explicitly. Here I use the vector product where p? = (f)z = 22 = 1, and these vectors
anticommute when different

Vi = <pa + ‘£a¢ +20 ) (pap¢ + éaqﬂp + zaZ¢>

- 93, <pap¢ " fa(,,lp +29 ¢) "’a¢ <pap¢ " fa(,ﬂp + 29, ) P (paplp " éa(,,zp " zaz¢>
=3, + PP, ( a¢¢> +pEdp "’a¢ (pa,yp)+ 2 a¢ ( a¢¢> +"; a¢z¢+zpazp¢+i”az¢¢+azzlp
1 1
= Oppp + *apl:” + p73¢¢¢ + 0221 + P (—patp’P + Eaqullj - ;afppl/’ 8¢1p>
+2p (—0pztp + aZP’v”) + ¢z ( Oz — 24>1P>

= Opptp + apl/’ + a4>4>¢ +0z2¢,
(1.12)

so the Laplacian operator is

s le g @y 16 &
v s ‘Oap +p28¢2+azz' (1.13)

All the bivector grades of the Laplacian operator are seen to explicitly cancel, regardless of the
grade of i, just as if we had expanded the scalar Laplacian as a dot product V?y = V - (V). Unlike
such a scalar expansion, this derivation is seen to be valid for any grade ¢. We know now that we
can trust this result when ¢ is a scalar, a vector, a bivector, a trivector, or even a multivector.

Vector Laplacian ~ Now that we trust that the typical scalar form of the Laplacian applies equally well
to multivectors as it does to scalars, that cylindrical coordinate operator can now be applied to a
vector. Consider the projections onto each of the directions in turn

R o1 1 R R
vV (pAy) = Pﬁap (09pAp) + ;aqbqﬁ (PAp) + POz Ap (1.14)



Upp (PAp) = 9p (PAp + pIpA,)
= —pAp + (i)a(pAp + ¢8¢AP + f)8¢¢AP (115)

=P (9gpAp — Ap) +2¢3pA,

so this component of the vector Laplacian is

R (1 1 1 n 1
Vz (PAP) =p <pap (papAp) + EB(M;AP — EA‘D + BZZAP> + (p (2()28¢AP>

1

) (1.16)
=p <V2AP — p2Ap> + @Ea(,,Ap.

The Laplacian for the projection of the vector onto the ¢ direction is

. 1 1. . .
Vi (949) = 9,9 (0pAg) + 7099 ($Ag) + P04y, (1.17)

Again, since the unit vectors are ¢ dependent, the ¢ derivatives have to be treated carefully

Ipp (PAp) = p (—pAp + PIpAy)
= =P Ay — pIpAy — PApAp + PIpp Ay (118)
= —2pdgAp + P (Jpp Ay — Ay)

so the Laplacian of this projection is

5 A (1 4 1 Ay 2
V2 (pAg) = <pap (09pAg) + §:2Ag, 504949 p2> —P 2%
4 5 (1.19)
n ¢ .
=¢<V2A —> — PS0,A4.
¢ 02 02 P3¢
Since 2 is fixed we have
V22A, = 2V?A,. (1.20)
Putting all the pieces together we have
1 2 A Ap 2
VA =p (VZAP — EAP — p284,A¢) +¢ (V2A¢ — P%” + pZa¢AP) +2V?A,. (1.21)

This matches the result eq. (1.9) from the painful expansion of V (V- A) — V x (V x A).



