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Line charge field and potential.

When computing the most general solution of the electrostatic potential in a plane, Jackson [1] men-
tions that −2λ0 ln ρ is the well known potential for an infinite line charge (up to the unit specific
factor). Checking that statement, since I didn’t recall what that potential was offhand, I encountered
some inconsistencies and non-convergent integrals, and thought it was worthwhile to explore those
a bit more carefully. This will be done here.

Using Gauss’s law. For an infinite length line charge, we can find the radial field contribution using
Gauss’s law, imagining a cylinder of length ∆l of radius ρ surrounding this charge with the midpoint
at the origin. Ignoring any non-radial field contribution, we have

(1.1)
∫ ∆l/2

−∆l/2
n̂ · E(2πρ)dl =

λ0

ε0
∆l,

or

(1.2)E =
λ0

2πε0

ρ̂

ρ
.

Since

(1.3)
ρ̂

ρ
= ∇ ln ρ,

this means that the potential is

(1.4)φ = − 2λ0

4πε0
ln ρ.

Finite line charge potential. Let’s try both these calculations for a finite charge distribution. Gauss’s
law looses its usefulness, but we can evaluate the integrals directly. For the electric field

(1.5)E =
λ0

4πε0

∫ (x − x′)

|x − x′|3
dl′.

Using cylindrical coordinates with the field point x = ρρ̂ for convience, the charge point x′ = z′ẑ,
and a the charge distributed over [a, b] this is
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(1.6)E =
λ0

4πε0

∫ b

a

(ρρ̂ − z′ẑ)(
ρ2 + (z′)2

)3/2
dz′.

When the charge is uniformly distributed around the origin [a, b] = b[−1, 1] the ẑ component of this
field is killed because the integrand is odd. This justifies ignoring such contributions in the Gaussing
cylinder analysis above. The general solution to this integral is found to be

(1.7)E =
λ0

4πε0

(
z′ρ̂

ρ
√

ρ2 + (z′)2
+

ẑ√
ρ2 + (z′)2

)∣∣∣∣∣
b

a

,

or

E =
λ0

4πε0

(
ρ̂

ρ

(
b√

ρ2 + b2
− a√

ρ2 + a2

)
+ ẑ

(
1√

ρ2 + b2
− 1√

ρ2 + a2

))
. (1.8)

When b = −a = ∆l/2, this reduces to

(1.9)E =
λ0

4πε0

ρ̂

ρ

∆l√
ρ2 + (∆l/2)2

,

which further reduces to eq. (1.2) when ∆l � ρ.

Finite line charge potential. Wrong but illuminating. Again, putting the field point at z′ = 0, we have

(1.10)φ(ρ) =
λ0

4πε0

∫ b

a

dz′(
ρ2 + (z′)2

)1/2
,

which integrates to

(1.11)φ(ρ) =
λ0

4πε0
ln

b +
√

ρ2 + b2

a +
√

ρ2 + a2
.

With b = −a = ∆l/2, this approaches

(1.12)
φ ≈ λ0

4πε0
ln

(∆l/2)
ρ2/2|∆l/2|

=
−2λ0

4πε0
ln ρ +

λ0

4πε0
ln
(
(∆l)2/2

)
.

Before ∆l is allowed to tend to infinity, this is identical (up to a difference in the reference potential)
to eq. (1.4) found using Gauss’s law. It is, strictly speaking, singular when ∆l → ∞, so it does not
seem right to infinity as a reference point for the potential.

There’s another weird thing about this result. Since this has no z dependence, it is not obvious how
we would recover the non-radial portion of the electric field from this potential using E = −∇φ? Let’s
calculate the elecric field from eq. (1.10) explicitly
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(1.13)

E = − λ0

4πε0
∇ ln

b +
√

ρ2 + b2

a +
√

ρ2 + a2

= − λ0ρ̂

4πε0

∂

∂ρ
ln

b +
√

ρ2 + b2

a +
√

ρ2 + a2

= − λ0ρ̂

4πε0

(
1

b +
√

ρ2 + b2

ρ√
ρ2 + b2

− 1
a +
√

ρ2 + a2

ρ√
ρ2 + a2

)

= − λ0ρ̂

4πε0ρ

(
−b +

√
ρ2 + b2√

ρ2 + b2
− −a +

√
ρ2 + a2√

ρ2 + a2

)

=
λ0ρ̂

4πε0ρ

(
b√

ρ2 + b2
− a√

ρ2 + a2

)
.

This recovers the radial component of the field from eq. (1.8), but where did the ẑ component go?
The required potential appears to be

(1.14)φ(ρ, z) =
λ0

4πε0
ln

b +
√

ρ2 + b2

a +
√

ρ2 + a2
− zλ0

4πε0

(
1√

ρ2 + b2
− 1√

ρ2 + a2

)
.

When computing the electric field E(ρ, θ, z), it was convienent to pick the coordinate system so that
z = 0. Doing this with the potential gives the wrong answers. The reason for this appears to be that
this kills the potential term that is linear in z before taking its gradient, and we need that term to
have the ẑ field component that is expected for a charge distribution that is non-symmetric about the
origin on the z-axis!

Finite line charge potential. Take II. Let the point at which the potential is evaluated be

(1.15)x = ρρ̂ + zẑ,

and the charge point be
(1.16)x′ = z′ẑ.

This gives

(1.17)

φ(ρ, z) =
λ0

4πε0

∫ b

a

dz′

|ρ2 + (z − z′)2|

=
λ0

4πε0

∫ b−z

a−z

du
|ρ2 + u2|

=
λ0

4πε0
ln
(

u +
√

ρ2 + u2

)∣∣∣∣a−z

b−z

=
λ0

4πε0
ln

b − z +
√

ρ2 + (b − z)2

a − z +
√

ρ2 + (a − z)2
.
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The limit of this potential a = −∆/2 → −∞, b = ∆/2 → ∞ doesn’t exist in any strict sense. If we
are cavilier about the limits, as in eq. (1.12), this can be evaluated as

(1.18)φ ≈ λ0

4πε0

(
−2 ln ρ + constant

)
.

however, the constant (ln ∆2/2) is infinite, so there isn’t really a good justification for using that
constant as the potential reference point directly.

It seems that the “right” way to calculate the potential for the infinite distribution, is to

• Calculate the field from the potential.

• Take the PV limit of that field with the charge distribution extending to infinity.

• Compute the corresponding potential from this limiting value of the field.

Doing that doesn’t blow up. That field calculation, for the finite case, should include a ẑ compo-
nent. To verify, let’s take the respective derivatives

(1.19)

− ∂

∂z
φ = − λ0

4πε0

 −1 + z−b√
ρ2+(b−z)2

b − z +
√

ρ2 + (b − z)2
−

−1 + z−a√
ρ2+(a−z)2

a − z +
√

ρ2 + (a − z)2


=

λ0

4πε0

 1 + b−z√
ρ2+(b−z)2

b − z +
√

ρ2 + (b − z)2
−

1 + a−z√
ρ2+(a−z)2

a − z +
√

ρ2 + (a − z)2


=

λ0

4πε0

(
1√

ρ2 + (b − z)2
− 1√

ρ2 + (a − z)2

)
,

and

(1.20)

− ∂

∂ρ
φ = − λ0

4πε0

 ρ√
ρ2+(b−z)2

b − z +
√

ρ2 + (b − z)2
−

ρ√
ρ2+(a−z)2

a − z +
√

ρ2 + (a − z)2


= − λ0

4πε0

ρ
(
−(b − z) +

√
ρ2 + (b − z)2

)
ρ2
√

ρ2 + (b − z)2
−

ρ
(
−(a − z) +

√
ρ2 + (a − z)2

)
ρ2
√

ρ2 + (a − z)2


=

λ0

4πε0ρ

(
b − z√

ρ2 + (b − z)2
− a − z√

ρ2 + (a − z)2

)
.

Putting the pieces together, the electric field is

(1.21)E =
λ0

4πε0

(
ρ̂

ρ

(
b − z√

ρ2 + (b − z)2
− a − z√

ρ2 + (a − z)2

)
+ ẑ

(
1√

ρ2 + (b − z)2
− 1√

ρ2 + (a − z)2

))
.

For has a PV limit of eq. (1.2) at z = 0, and also for the finite case, has the ẑ field component that
was obtained when the field was obtained by direct integration.
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Conclusions

• We have to evaluate the potential at all points in space, not just on the axis that we evaluate the
field on (should we choose to do so).

• In this case, we found that it was not directly meaningful to take the limit of a potential dis-
tribution. We can, however, compute the field from a potential for a finite charge distribution,
take the limit of that field, and then calculate the corresponding potential for the infinite distri-
bution.

Is there a more robust mechanism that can be used to directly calculate the potential for an infinite
charge distribution, instead of calculating the potential from the field of such an infinite distribution?

I think that were things go wrong is that the integral of eq. (1.10) does not apply to charge distri-
butions that are not finite on the infinite range z ∈ [−∞, ∞]. That solution was obtained by utilizing
an all-space Green’s function, and the boundary term in that Green’s analysis was assumed to tend
to zero. That isn’t the case when the charge distribution is λ0δ(z).
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