Calculating the magnetostatic field from the moment

The vector potential, to first order, for a magnetostatic localized current distribution was found to be

$$
\begin{equation*}
\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{x}}{|\mathbf{x}|^{3}} . \tag{1.1}
\end{equation*}
$$

Initially, I tried to calculate the magnetic field from this, but ran into trouble. Here's a new try.

$$
\begin{align*}
\mathbf{B} & =\frac{\mu_{0}}{4 \pi} \boldsymbol{\nabla} \times\left(\mathbf{m} \times \frac{\mathbf{x}}{r^{3}}\right) \\
& =-\frac{\mu_{0}}{4 \pi} \boldsymbol{\nabla} \cdot\left(\mathbf{m} \wedge \frac{\mathbf{x}}{r^{3}}\right) \\
& =-\frac{\mu_{0}}{4 \pi}\left((\mathbf{m} \cdot \boldsymbol{\nabla}) \frac{\mathbf{x}}{r^{3}}-\mathbf{m} \boldsymbol{\nabla} \cdot \frac{\mathbf{x}}{r^{3}}\right) \tag{1.2}\\
& =\frac{\mu_{0}}{4 \pi}\left(-\frac{(\mathbf{m} \cdot \boldsymbol{\nabla}) \mathbf{x}}{r^{3}}-\left(\mathbf{m} \cdot\left(\boldsymbol{\nabla} \frac{1}{r^{3}}\right)\right) \mathbf{x}+\mathbf{m}(\boldsymbol{\nabla} \cdot \mathbf{x}) \frac{1}{r^{3}}+\mathbf{m}\left(\nabla \frac{1}{r^{3}}\right) \cdot \mathbf{x}\right) .
\end{align*}
$$

Here I've used $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=-\mathbf{a} \cdot(\mathbf{b} \wedge \mathbf{c})$, and then expanded that with $\mathbf{a} \cdot(\mathbf{b} \wedge \mathbf{c})=(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}-(\mathbf{a} \cdot$ c)b. Since one of these vectors is the gradient, care must be taken to have it operate on the appropriate terms in such an expansion.

Since we have $\boldsymbol{\nabla} \cdot \mathbf{x}=3,(\mathbf{m} \cdot \boldsymbol{\nabla}) \mathbf{x}=\mathbf{m}$, and $\boldsymbol{\nabla} 1 / r^{n}=-n \mathbf{x} / r^{n+2}$, this reduces to

$$
\begin{align*}
\mathbf{B} & =\frac{\mu_{0}}{4 \pi}\left(-\frac{\mathbf{m}}{r^{3}}+3 \frac{(\mathbf{m} \cdot \mathbf{x}) \mathbf{x}}{r^{5}}+3 \mathbf{m} \frac{1}{r^{3}}-3 \mathbf{m} \frac{\mathbf{x}}{r^{5}} \cdot \mathbf{x}\right) \tag{1.3}\\
& =\frac{\mu_{0}}{4 \pi} \frac{3(\mathbf{m} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}-\mathbf{m}}{r^{3}},
\end{align*}
$$

which is the desired result.

