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Magnetic moment for a localized magnetostatic current

Motivation. I was once again reading my Jackson [2]. This time I found that his presentation of
magnetic moment didn’t really make sense to me. Here’s my own pass through it, filling in a number
of details. As I did last time, I’ll also translate into SI units as I go.

Vector potential. The Biot-Savart expression for the magnetic field can be factored into a curl expres-
sion using the usual tricks

(1.1)

B =
µ0

4π

∫ J(x′)× (x − x′)

|x − x′|3
d3x′

= − µ0

4π

∫
J(x′)×∇ 1

|x − x′|d
3x′

=
µ0

4π
∇ ×

∫ J(x′)
|x − x′|d

3x′,

so the vector potential, through its curl, defines the magnetic field B = ∇×A is given by

(1.2)A(x) =
µ0

4π

∫ J(x′)
|x − x′|d

3x′.

If the current source is localized (zero outside of some finite region), then there will always be a
region for which |x| � |x′|, so the denominator yields to Taylor expansion

(1.3)

1
|x − x′| =

1
|x|

(
1 +
|x′|2

|x|2
− 2

x · x′

|x|2

)−1/2

≈ 1
|x|

(
1 +

x · x′

|x|2

)

=
1
|x| +

x · x′

|x|3
.

so the vector potential, far enough away from the current source is

(1.4)B(x) =
µ0

4π

∫ J(x′)
|x| d3x′ +

µ0

4π

∫ (x · x′)J(x′)

|x|3
d3x′.
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Jackson uses a sneaky trick to show that the first integral is killed for a localized source. That trick
appears to be based on evaluating the following divergence

(1.5)

∇ · (J(x)xi) = (∇ · J)xi + (∇xi) · J
= (ek∂kxi) · J
= δki Jk
= Ji.

Note that this made use of the fact that ∇ · J = 0 for magnetostatics. This provides a way to rewrite
the current density as a divergence

(1.6)

∫ J(x′)
|x| d3x′ = ei

∫ ∇′ · (x′iJ(x′))
|x| d3x′

=
ei

|x|

∫
∇′ · (x′iJ(x′))d3x′

=
1
|x|

∮
x′(da · J(x′)).

When J is localized, this is zero provided we pick the integration surface for the volume outside of
that localization region.

It is now desired to rewrite
∫

x · x′J as a triple cross product since the dot product of such a triple
cross product has exactly this term in it

(1.7)
−x ×

∫
x′ × J =

∫
(x · x′)J −

∫
(x · J)x′

=
∫

(x · x′)J − ekxi

∫
Jix′k,

so
(1.8)

∫
(x · x′)J = −x ×

∫
x′ × J + ekxi

∫
Jix′k.

To get of this second term, the next sneaky trick is to consider the following divergence

(1.9)

∮
da′ · (J(x′)x′ix

′
j) =

∫
dV ′∇′ · (J(x′)x′ix

′
j)

=
∫

dV ′(∇′ · J) +
∫

dV ′J ·∇′(x′ix′j)

=
∫

dV ′ Jk ·
(

x′i∂kx′j + x′j∂kx′i
)

=
∫

dV ′ Jkx′iδkj + Jkx′jδki

=
∫

dV ′ Jjx′i + Jix′j.

The surface integral is once again zero, which means that we have an antisymmetric relationship
in integrals of the form
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(1.10)
∫

Jjx′i = −
∫

Jix′j.

Now we can use the tensor algebra trick of writing y = (y + y)/2,

(1.11)

∫
(x · x′)J = −x ×

∫
x′ × J + ekxi

∫
Jix′k

= −x ×
∫

x′ × J +
1
2

ekxi

∫ (
Jix′k + Jix′k

)
= −x ×

∫
x′ × J +

1
2

ekxi

∫ (
Jix′k − Jkx′i

)
= −x ×

∫
x′ × J +

1
2

ekxi

∫
(J × x′)jεikj

= −x ×
∫

x′ × J − 1
2

εkijekxi

∫
(J × x′)j

= −x ×
∫

x′ × J − 1
2

x ×
∫

J × x′

= −x ×
∫

x′ × J +
1
2

x ×
∫

x′ × J

= −1
2

x ×
∫

x′ × J,

so

(1.12)A(x) ≈ µ0

4π|x|3
(
−x

2

) ∫
x′ × J(x′)d3x′.

Letting

m =
1
2

∫
x′ × J(x′)d3x′, (1.13)

the far field approximation of the vector potential is

A(x) =
µ0

4π

m× x

|x|3
. (1.14)

Note that when the current is restricted to an infintisimally thin loop, the magnetic moment reduces
to

(1.15)m(x) =
I
2

∫
x × dl′.

Refering to [1] (pr. 1.60), this can be seen to be I times the “vector-area” integral.
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