Peeter Joot
 peeterjoot@protonmail.com

Magnetic moment for a localized magnetostatic current

Motivation. I was once again reading my Jackson [2]. This time I found that his presentation of magnetic moment didn't really make sense to me. Here's my own pass through it, filling in a number of details. As I did last time, I'll also translate into SI units as I go.

Vector potential. The Biot-Savart expression for the magnetic field can be factored into a curl expression using the usual tricks

$$
\begin{align*}
\mathbf{B} & =\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right) \times\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}} d^{3} x^{\prime} \\
& =-\frac{\mu_{0}}{4 \pi} \int \mathbf{J}\left(\mathbf{x}^{\prime}\right) \times \boldsymbol{\nabla} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \tag{1.1}\\
& =\frac{\mu_{0}}{4 \pi} \boldsymbol{\nabla} \times \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime},
\end{align*}
$$

so the vector potential, through its curl, defines the magnetic field $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$ is given by

$$
\begin{equation*}
\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int \frac{J\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} . \tag{1.2}
\end{equation*}
$$

If the current source is localized (zero outside of some finite region), then there will always be a region for which $|\mathbf{x}| \gg\left|\mathbf{x}^{\prime}\right|$, so the denominator yields to Taylor expansion

$$
\begin{align*}
\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} & =\frac{1}{|\mathbf{x}|}\left(1+\frac{\left|\mathbf{x}^{\prime}\right|^{2}}{|\mathbf{x}|^{2}}-2 \frac{\mathbf{x} \cdot \mathbf{x}^{\prime}}{|\mathbf{x}|^{2}}\right)^{-1 / 2} \\
& \approx \frac{1}{|\mathbf{x}|}\left(1+\frac{\mathbf{x} \cdot \mathbf{x}^{\prime}}{|\mathbf{x}|^{2}}\right) \tag{1.3}\\
& =\frac{1}{|\mathbf{x}|}+\frac{\mathbf{x} \cdot \mathbf{x}^{\prime}}{|\mathbf{x}|^{3}}
\end{align*}
$$

so the vector potential, far enough away from the current source is

$$
\begin{equation*}
\mathbf{B}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int \frac{J\left(\mathbf{x}^{\prime}\right)}{|\mathbf{x}|} d^{3} x^{\prime}+\frac{\mu_{0}}{4 \pi} \int \frac{\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right) J\left(\mathbf{x}^{\prime}\right)}{|\mathbf{x}|^{3}} d^{3} x^{\prime} . \tag{1.4}
\end{equation*}
$$

Jackson uses a sneaky trick to show that the first integral is killed for a localized source. That trick appears to be based on evaluating the following divergence

$$
\begin{align*}
\boldsymbol{\nabla} \cdot\left(\mathbf{J}(\mathbf{x}) x_{i}\right) & =(\boldsymbol{\nabla} \cdot \mathbf{J}) x_{i}+\left(\boldsymbol{\nabla} x_{i}\right) \cdot \mathbf{J} \\
& =\left(\mathbf{e}_{k} \partial_{k} x_{i}\right) \cdot \mathbf{J} \tag{1.5}\\
& =\delta_{k i} J_{k} \\
& =J_{i} .
\end{align*}
$$

Note that this made use of the fact that $\nabla \cdot \mathbf{J}=0$ for magnetostatics. This provides a way to rewrite the current density as a divergence

$$
\begin{align*}
\int \frac{J\left(\mathbf{x}^{\prime}\right)}{|\mathbf{x}|} d^{3} x^{\prime} & =\mathbf{e}_{i} \int \frac{\boldsymbol{\nabla}^{\prime} \cdot\left(x_{i}^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right)\right)}{|\mathbf{x}|} d^{3} x^{\prime} \\
& =\frac{\mathbf{e}_{i}}{|\mathbf{x}|} \int \boldsymbol{\nabla}^{\prime} \cdot\left(x_{i}^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right)\right) d^{3} x^{\prime} \tag{1.6}\\
& =\frac{1}{|\mathbf{x}|} \oint \mathbf{x}^{\prime}\left(d \mathbf{a} \cdot \mathbf{J}\left(\mathbf{x}^{\prime}\right)\right) .
\end{align*}
$$

When \mathbf{J} is localized, this is zero provided we pick the integration surface for the volume outside of that localization region.
It is now desired to rewrite $\int \mathbf{x} \cdot \mathbf{x}^{\prime} \mathbf{J}$ as a triple cross product since the dot product of such a triple cross product has exactly this term in it

$$
\begin{align*}
-\mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J} & =\int\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right) \mathbf{J}-\int(\mathbf{x} \cdot \mathbf{J}) \mathbf{x}^{\prime} \tag{1.7}\\
& =\int\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right) \mathbf{J}-\mathbf{e}_{k} x_{i} \int J_{i} x_{k}^{\prime}
\end{align*}
$$

so

$$
\begin{equation*}
\int\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right) \mathbf{J}=-\mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J}+\mathbf{e}_{k} x_{i} \int J_{i} x_{k}^{\prime} . \tag{1.8}
\end{equation*}
$$

To get of this second term, the next sneaky trick is to consider the following divergence

$$
\begin{align*}
\oint d \mathbf{a}^{\prime} \cdot\left(\mathbf{J}\left(\mathbf{x}^{\prime}\right) x_{i}^{\prime} x_{j}^{\prime}\right) & =\int d V^{\prime} \nabla^{\prime} \cdot\left(\mathbf{J}\left(\mathbf{x}^{\prime}\right) x_{i}^{\prime} x_{j}^{\prime}\right) \\
& =\int d V^{\prime}\left(\nabla^{\prime} \cdot \mathbf{J}\right)+\int d V^{\prime} \mathbf{J} \cdot \boldsymbol{\nabla}^{\prime}\left(x_{i}^{\prime} x_{j}^{\prime}\right) \\
& =\int d V^{\prime} J_{k} \cdot\left(x_{i}^{\prime} \partial_{k} x_{j}^{\prime}+x_{j}^{\prime} \partial_{k} x_{i}^{\prime}\right) \tag{1.9}\\
& =\int d V^{\prime} J_{k} x_{i}^{\prime} \delta_{k j}+J_{k} x_{j}^{\prime} \delta_{k i} \\
& =\int d V^{\prime} J_{j} x_{i}^{\prime}+J_{i} x_{j}^{\prime} .
\end{align*}
$$

The surface integral is once again zero, which means that we have an antisymmetric relationship in integrals of the form

$$
\begin{equation*}
\int J_{j} x_{i}^{\prime}=-\int J_{i} x_{j}^{\prime} \tag{1.10}
\end{equation*}
$$

Now we can use the tensor algebra trick of writing $y=(y+y) / 2$,

$$
\begin{align*}
\int\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right) \mathbf{J} & =-\mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J}+\mathbf{e}_{k} x_{i} \int J_{i} x_{k}^{\prime} \\
& =-\mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J}+\frac{1}{2} \mathbf{e}_{k} x_{i} \int\left(J_{i} x_{k}^{\prime}+J_{i} x_{k}^{\prime}\right) \\
& =-\mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J}+\frac{1}{2} \mathbf{e}_{k} x_{i} \int\left(J_{i} x_{k}^{\prime}-J_{k} x_{i}^{\prime}\right) \\
& =-\mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J}+\frac{1}{2} \mathbf{e}_{k} x_{i} \int\left(\mathbf{J} \times \mathbf{x}^{\prime}\right)_{j} \epsilon_{i k j} \tag{1.11}\\
& =-\mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J}-\frac{1}{2} \epsilon_{k i j} \mathbf{e}_{k} x_{i} \int\left(\mathbf{J} \times \mathbf{x}^{\prime}\right)_{j} \\
& =-\mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J}-\frac{1}{2} \mathbf{x} \times \int \mathbf{J} \times \mathbf{x}^{\prime} \\
& =-\mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J}+\frac{1}{2} \mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J} \\
& =-\frac{1}{2} \mathbf{x} \times \int \mathbf{x}^{\prime} \times \mathbf{J}
\end{align*}
$$

so

$$
\begin{equation*}
\mathbf{A}(\mathbf{x}) \approx \frac{\mu_{0}}{4 \pi|\mathbf{x}|^{3}}\left(-\frac{\mathbf{x}}{2}\right) \int \mathbf{x}^{\prime} \times \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime} \tag{1.12}
\end{equation*}
$$

Letting

$$
\begin{equation*}
\mathbf{m}=\frac{1}{2} \int \mathbf{x}^{\prime} \times \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime} \tag{1.13}
\end{equation*}
$$

the far field approximation of the vector potential is

$$
\begin{equation*}
\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{x}}{|\mathbf{x}|^{3}} \tag{1.14}
\end{equation*}
$$

Note that when the current is restricted to an infintisimally thin loop, the magnetic moment reduces to

$$
\begin{equation*}
\mathbf{m}(\mathbf{x})=\frac{I}{2} \int \mathbf{x} \times d \mathbf{l}^{\prime} \tag{1.15}
\end{equation*}
$$

Refering to [1] (pr. 1.60), this can be seen to be I times the "vector-area" integral.

Bibliography

[1] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999. 1
[2] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975. 1

