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Magnetic moment for a localized magnetostatic current

Motivation. 1 was once again reading my Jackson [2]. This time I found that his presentation of
magnetic moment didn’t really make sense to me. Here’s my own pass through it, filling in a number
of details. As I did last time, I'll also translate into SI units as I go.

Vector potential. ~ The Biot-Savart expression for the magnetic field can be factored into a curl expres-
sion using the usual tricks
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so the vector potential, through its curl, defines the magnetic field B = V x A is given by
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If the current source is localized (zero outside of some finite region), then there will always be a
region for which |x| > |x/|, so the denominator yields to Taylor expansion

so the vector potential, far enough away from the current source is
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Jackson uses a sneaky trick to show that the first integral is killed for a localized source. That trick
appears to be based on evaluating the following divergence
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Note that this made use of the fact that V - J = 0 for magnetostatics. This provides a way to rewrite
the current density as a divergence
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When J is localized, this is zero provided we pick the integration surface for the volume outside of
that localization region.

It is now desired to rewrite [ x - x'J as a triple cross product since the dot product of such a triple
cross product has exactly this term in it
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To get of this second term, the next sneaky trick is to consider the following divergence
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The surface integral is once again zero, which means that we have an antisymmetric relationship
in integrals of the form
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Now we can use the tensor algebra trick of writing y = (v +y)/2,
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A(x) ~ 0 (-%) / X % J()x. (1.12)
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SO

Letting

m = % / X X Jo)dx, (1.13)

the far field approximation of the vector potential is
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Note that when the current is restricted to an infintisimally thin loop, the magnetic moment reduces
to

m(x) = ;/x wdl'. (1.15)

Refering to [1] (pr. 1.60), this can be seen to be I times the “vector-area” integral.
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