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Maxwell equation boundary conditions

1.1 Motivation

Most electrodynamics textbooks either start with or contain a treatment of boundary value condi-
tions. These typically involve evaluating Maxwell’s equations over areas or volumes of decreasing
height, such as those illustrated in fig. 1.1, and fig. 1.2. These represent surfaces and volumes where
the height is allowed to decrease to infinitesimal levels, and are traditionally used to find the bound-
ary value constraints of the normal and tangential components of the electric and magnetic fields.

Figure 1.1: Two surfaces normal to the interface.

More advanced topics, such as evaluation of the Fresnel reflection and transmission equations, also
rely on similar consideration of boundary value constraints. I’ve wondered for a long time how the
Fresnel equations could be attacked by looking at the boundary conditions for the combined field
F = E + IcB, instead of the considering them separately.
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Figure 1.2: A pillbox volume encompassing the interface.

1.2 A unified approach.

The Geometric Algebra (and relativistic tensor) formulations of Maxwell’s equations put the electric
and magnetic fields on equal footings. It is in fact possible to specify the boundary value constraints
on the fields without first separating Maxwell’s equations into their traditional forms. The starting
point in Geometric Algebra is Maxwell’s equation, premultiplied by a stationary observer’s timelike
basis vector

(1.1)γ0∇F =
1

ε0c
γ0 J,

or

(1.2)(∂0 + ∇) F =
ρ

ε0
− J

ε0
.

The electrodynamic field F = E + IcB is a multivector in this spatial domain (whereas it is a bivector
in the spacetime algebra domain), and has vector and bivector components. The product of the
spatial gradient and the field can still be split into dot and curl components ∇M = ∇ ·M + ∇ ∧M.
If M = ∑ Mi, where Mi is an grade i blade, then we give this the Hestenes’ [1] definitions

(1.3)

∇ · M = ∑
i
〈∇Mi〉i−1

∇ ∧ M = ∑
i
〈∇Mi〉i+1.

With that said, Maxwell’s equation can be rearranged into a pair of multivector equations

(1.4)
∇ · F =

〈
−∂0F +

ρ

ε0
− J

ε0c

〉
0,1

∇ ∧ F =
〈
−∂0F +

ρ

ε0
− J

ε0c

〉
2,3

,
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The latter equation can be integrated with Stokes theorem, but we need to apply a duality trans-
formation to the latter in order to apply Stokes to it

(1.5)

∇ · F = −I2∇ · F
= −I2〈∇F〉0,1

= −I〈I∇F〉2,3
= −I∇ ∧ (IF),

so

(1.6)
∇ ∧ (IF) = I

(
−1

c
∂tE +

ρ

ε0
− J

ε0c

)
∇ ∧ F = −I∂tB.

Integrating each of these over the pillbox volume gives

(1.7)

∮
∂V

d2x · (IF) =
∫

V
d3x ·

(
I
(
−1

c
∂tE +

ρ

ε0
− J

ε0c

))
∮

∂V
d2x · F = −∂t

∫
V

d3x · (IB) .

In the absence of charges and currents on the surface, and if the height of the volume is reduced to
zero, the volume integrals vanish, and only the upper surfaces of the pillbox contribute to the surface
integrals.

(1.8)

∮
∂V

d2x · (IF) = 0∮
∂V

d2x · F = 0.

With a multivector F in the mix, the geometric meaning of these integrals is not terribly clear. They
do describe the boundary conditions, but to see exactly what those are, we can now resort to the split
of F into its electric and magnetic fields. Let’s look at the non-dual integral to start with

(1.9)

∮
∂V

d2x · F =
∮

∂V
d2x · (E + IcB)

=
∮

∂V
d2x · E + Icd2x ∧ B

= 0.

No component of E that is normal to the surface contributes to d2x · E, whereas only components
of B that are normal contribute to d2x ∧ B. That means that we must have tangential components of
E and the normal components of B matching on the surfaces

(1.10)
(E2 ∧ n̂) n̂ − (E1 ∧ (−n̂)) (−n̂) = 0
(B2 · n̂) n̂ − (B1 · (−n̂)) (−n̂) = 0.
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Similarly, for the dot product of the dual field, this is

(1.11)

∮
∂V

d2x · (IF) =
∮

∂V
d2x · (IE − cB)

=
∮

∂V
Id2x ∧ E − cd2x · B.

For this integral, only the normal components of E contribute, and only the tangential components
of B contribute. This means that

(1.12)
(E2 · n̂) n̂ − (E1 · (−n̂)) (−n̂) = 0

(B2 ∧ n̂) n̂ − (B1 ∧ (−n̂)) (−n̂) = 0.

This is why we end up with a seemingly strange mix of tangential and normal components of the
electric and magnetic fields. These constraints can be summarized as

(1.13)

(E2 − E1) · n̂ = 0
(E2 − E1) ∧ n̂ = 0
(B2 − B1) · n̂ = 0

(B2 − B1) ∧ n̂ = 0

These relationships are usually expressed in terms of all of E, D, B and H. Because I’d started with
Maxwell’s equations for free space, I don’t have the ε and µ factors that produce those more general
relationships. Those more general boundary value relationships are usually the starting point for
the Fresnel interface analysis. It is also possible to further generalize these relationships to include
charges and currents on the surface.
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