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Transverse gauge

Jackson [1] has an interesting presentation of the transverse gauge. I’d like to walk through the details
of this, but first want to translate the preliminaries to SI units (if I had the 3rd edition I’d not have to
do this translation step).

Gauge freedom The starting point is noting that ∇ · B = 0 the magnetic field can be expressed as a
curl

(1.1)B = ∇ × A.

Faraday’s law now takes the form

(1.2)

0 = ∇ × E +
∂B
∂t

= ∇ × E +
∂

∂t
(∇ × A)

= ∇ ×
(

E +
∂A
∂t

)
.

Because this curl is zero, the interior sum can be expressed as a gradient

(1.3)E +
∂A
∂t
≡ −∇Φ.

This can now be substituted into the remaining two Maxwell’s equations.

(1.4)
∇ ·D = ρv

∇ ×H = J +
∂D
∂t

For Gauss’s law, in simple media, we have

(1.5)
ρv = ε∇ · E

= ε∇ ·
(
−∇Φ − ∂A

∂t

)
For simple media again, the Ampere-Maxwell equation is
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(1.6)
1
µ
∇ × (∇ × A) = J + ε

∂

∂t

(
−∇Φ − ∂A

∂t

)
.

Expanding ∇× (∇×A) = −∇2A + ∇ (∇ ·A) gives

(1.7)−∇2A + ∇ (∇ · A) + εµ
∂2A
∂t2 = µJ − εµ∇∂Φ

∂t
.

Maxwell’s equations are now reduced to

∇2A−∇
(
∇ ·A + εµ

∂Φ
∂t

)
− εµ

∂2A
∂t2 = −µJ

∇2Φ +
∂∇ ·A

∂t
= −ρv

ε
.

(1.8)

There are two obvious constraints that we can impose

∇ ·A− εµ
∂Φ
∂t

= 0, (1.9)

or
∇ ·A = 0. (1.10)

The first constraint is the Lorentz gauge, which I’ve played with previously. It happens to be really
nice in a relativistic context since, in vacuum with a four-vector potential A = (Φ/c, A), that is a
requirement that the four-divergence of the four-potential vanishes (∂µ Aµ = 0).

Transverse gauge Jackson identifies the latter constraint as the transverse gauge, which I’m less fa-
miliar with. With this gauge selection, we have

(1.11a)∇2A − εµ
∂2A
∂t2 = −µJ + εµ∇∂Φ

∂t

(1.11b)∇2Φ = −ρv

ε
.

What’s not obvious is the fact that the irrotational (zero curl) contribution due to Φ in eq. (1.11a)
cancels the corresponding irrotational term from the current. Jackson uses a transverse and longitu-
dinal decomposition of the current, related to the Helmholtz theorem to allude to this.

That decomposition follows from expanding ∇2 J/R in two ways using the delta function−4πδ(x−
x′) = ∇21/R representation, as well as directly

(1.12)

−4πJ(x) =
∫

∇2 J(x′)
|x − x′|d

3x′

= ∇
∫

∇ · J(x′)
|x − x′|d

3x′ + ∇ ·
∫

∇ ∧ J(x′)
|x − x′|d

3x′

= −∇
∫

J(x′) ·∇′ 1
|x − x′|d

3x′ + ∇ ·
(
∇ ∧

∫ J(x′)
|x − x′|d

3x′
)

= −∇
∫

∇′ · J(x′)
|x − x′|d

3x′ + ∇
∫ ∇′ · J(x′)
|x − x′| d3x′ −∇ ×

(
∇ ×

∫ J(x′)
|x − x′|d

3x′
)
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The first term can be converted to a surface integral

(1.13)−∇
∫

∇′ · J(x′)
|x − x′|d

3x′ = −∇
∫

dA′ · J(x′)
|x − x′| ,

so provided the currents are either localized or |J|/R → 0 on an infinite sphere, we can make the
identification

J(x) = ∇ 1
4π

∫ ∇′ · J(x′)
|x− x′| d3x′ −∇×∇× 1

4π

∫ J(x′)
|x− x′|d

3x′ ≡ Jl + Jt, (1.14)

where ∇× Jl = 0 (irrotational, or longitudinal), whereas ∇ · Jt = 0 (solenoidal or transverse). The
irrotational property is clear from inspection, and the transverse property can be verified readily

(1.15)

∇ · (∇ × (∇ × X)) = −∇ · (∇ · (∇ ∧ X))

= −∇ ·
(
∇2X −∇ (∇ · X)

)
= −∇ ·

(
∇2X

)
+ ∇2 (∇ · X)

= 0.

Since

(1.16)Φ(x, t) =
1

4πε

∫
ρv(x′, t)
|x − x′|d

3x′,

we have

(1.17)

∇∂Φ
∂t

=
1

4πε
∇
∫

∂tρv(x′, t)
|x − x′| d3x′

=
1

4πε
∇
∫ −∇′ · J
|x − x′| d

3x′

=
Jl

ε
.

This means that the Ampere-Maxwell equation takes the form

∇2A− εµ
∂2A
∂t2 = −µJ + µJl = −µJt. (1.18)

This justifies the “transverse” in the label transverse gauge.
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