Peeter Joot
 peeterjoot@protonmail.com

Transverse gauge

Jackson [1] has an interesting presentation of the transverse gauge. I'd like to walk through the details of this, but first want to translate the preliminaries to SI units (if I had the 3rd edition I'd not have to do this translation step).

Gauge freedom The starting point is noting that $\boldsymbol{\nabla} \cdot \mathbf{B}=0$ the magnetic field can be expressed as a curl

$$
\begin{equation*}
\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A} . \tag{1.1}
\end{equation*}
$$

Faraday's law now takes the form

$$
\begin{align*}
0 & =\boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t} \\
& =\boldsymbol{\nabla} \times \mathbf{E}+\frac{\partial}{\partial t}(\boldsymbol{\nabla} \times \mathbf{A}) \tag{1.2}\\
& =\boldsymbol{\nabla} \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}\right) .
\end{align*}
$$

Because this curl is zero, the interior sum can be expressed as a gradient

$$
\begin{equation*}
\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t} \equiv-\nabla \Phi . \tag{1.3}
\end{equation*}
$$

This can now be substituted into the remaining two Maxwell's equations.

$$
\begin{align*}
\boldsymbol{\nabla} \cdot \mathbf{D} & =\rho_{v} \\
\boldsymbol{\nabla} \times \mathbf{H} & =\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t} \tag{1.4}
\end{align*}
$$

For Gauss's law, in simple media, we have

$$
\begin{align*}
\rho_{v} & =\epsilon \boldsymbol{\nabla} \cdot \mathbf{E} \\
& =\epsilon \boldsymbol{\nabla} \cdot\left(-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}\right) \tag{1.5}
\end{align*}
$$

For simple media again, the Ampere-Maxwell equation is

$$
\begin{equation*}
\frac{1}{\mu} \boldsymbol{\nabla} \times(\nabla \times \mathbf{A})=\mathbf{J}+\epsilon \frac{\partial}{\partial t}\left(-\nabla \Phi-\frac{\partial \mathbf{A}}{\partial t}\right) \tag{1.6}
\end{equation*}
$$

Expanding $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A})=-\boldsymbol{\nabla}^{2} \mathbf{A}+\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})$ gives

$$
\begin{equation*}
-\nabla^{2} \mathbf{A}+\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})+\epsilon \mu \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=\mu \mathbf{J}-\epsilon \mu \boldsymbol{\nabla} \frac{\partial \Phi}{\partial t} . \tag{1.7}
\end{equation*}
$$

Maxwell's equations are now reduced to

$$
\begin{align*}
\nabla^{2} \mathbf{A}-\boldsymbol{\nabla}\left(\boldsymbol{\nabla} \cdot \mathbf{A}+\epsilon \mu \frac{\partial \Phi}{\partial t}\right)-\epsilon \mu \frac{\partial^{2} \mathbf{A}}{\partial t^{2}} & =-\mu \mathbf{J} \tag{1.8}\\
\nabla^{2} \Phi+\frac{\partial \boldsymbol{\nabla} \cdot \mathbf{A}}{\partial t} & =-\frac{\rho_{v}}{\epsilon}
\end{align*}
$$

There are two obvious constraints that we can impose

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{A}-\epsilon \mu \frac{\partial \Phi}{\partial t}=0, \tag{1.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{A}=0 . \tag{1.10}
\end{equation*}
$$

The first constraint is the Lorentz gauge, which I've played with previously. It happens to be really nice in a relativistic context since, in vacuum with a four-vector potential $A=(\Phi / c, \mathbf{A})$, that is a requirement that the four-divergence of the four-potential vanishes $\left(\partial_{\mu} A^{\mu}=0\right)$.

Transverse gauge Jackson identifies the latter constraint as the transverse gauge, which I'm less familiar with. With this gauge selection, we have

$$
\begin{align*}
\nabla^{2} \mathbf{A}-\epsilon \mu \frac{\partial^{2} \mathbf{A}}{\partial t^{2}} & =-\mu \mathbf{J}+\epsilon \mu \nabla \frac{\partial \Phi}{\partial t} \tag{1.11a}\\
\nabla^{2} \Phi & =-\frac{\rho_{v}}{\epsilon} . \tag{1.11b}
\end{align*}
$$

What's not obvious is the fact that the irrotational (zero curl) contribution due to Φ in eq. (1.11a) cancels the corresponding irrotational term from the current. Jackson uses a transverse and longitudinal decomposition of the current, related to the Helmholtz theorem to allude to this.

That decomposition follows from expanding $\nabla^{2} J / R$ in two ways using the delta function $-4 \pi \delta(\mathbf{x}-$ $\left.\mathbf{x}^{\prime}\right)=\nabla^{2} 1 / R$ representation, as well as directly

$$
\begin{align*}
-4 \pi \mathbf{J}(\mathbf{x}) & =\int \nabla^{2} \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \\
& =\nabla \int \boldsymbol{\nabla} \cdot \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}+\boldsymbol{\nabla} \cdot \int \boldsymbol{\nabla} \wedge \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \tag{1.12}\\
& =-\boldsymbol{\nabla} \int \mathbf{J}\left(\mathbf{x}^{\prime}\right) \cdot \nabla^{\prime} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}+\boldsymbol{\nabla} \cdot\left(\boldsymbol{\nabla} \wedge \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}\right) \\
& =-\boldsymbol{\nabla} \int \nabla^{\prime} \cdot \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left\lvert\, \mathbf{x - \mathbf { x } ^ { \prime } |} d^{3} x^{\prime}+\boldsymbol{\nabla} \int \frac{\boldsymbol{\nabla}^{\prime} \cdot \mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}-\nabla \times\left(\nabla \times \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}\right)\right.}
\end{align*}
$$

The first term can be converted to a surface integral

$$
\begin{equation*}
-\nabla \int \nabla^{\prime} \cdot \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}=-\boldsymbol{\nabla} \int d \mathbf{A}^{\prime} \cdot \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{\prime}} \tag{1.13}
\end{equation*}
$$

so provided the currents are either localized or $|\mathbf{J}| / R \rightarrow 0$ on an infinite sphere, we can make the identification

$$
\begin{equation*}
\mathbf{J}(\mathbf{x})=\boldsymbol{\nabla} \frac{1}{4 \pi} \int \frac{\boldsymbol{\nabla}^{\prime} \cdot \mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}-\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \frac{1}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \equiv \mathbf{J}_{l}+\mathbf{J}_{t}, \tag{1.14}
\end{equation*}
$$

where $\boldsymbol{\nabla} \times \mathbf{J}_{l}=0$ (irrotational, or longitudinal), whereas $\boldsymbol{\nabla} \cdot \mathbf{J}_{t}=0$ (solenoidal or transverse). The irrotational property is clear from inspection, and the transverse property can be verified readily

$$
\begin{align*}
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{X})) & =-\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \wedge \mathbf{X})) \\
& =-\boldsymbol{\nabla} \cdot\left(\boldsymbol{\nabla}^{2} \mathbf{X}-\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{X})\right) \tag{1.15}\\
& =-\boldsymbol{\nabla} \cdot\left(\boldsymbol{\nabla}^{2} \mathbf{X}\right)+\boldsymbol{\nabla}^{2}(\boldsymbol{\nabla} \cdot \mathbf{X}) \\
& =0 .
\end{align*}
$$

Since

$$
\begin{equation*}
\Phi(\mathbf{x}, t)=\frac{1}{4 \pi \epsilon} \int \frac{\rho_{v}\left(\mathbf{x}^{\prime}, t\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}, \tag{1.16}
\end{equation*}
$$

we have

$$
\begin{align*}
\boldsymbol{\nabla} \frac{\partial \Phi}{\partial t} & =\frac{1}{4 \pi \epsilon} \boldsymbol{\nabla} \int \frac{\partial_{t} \rho_{v}\left(\mathbf{x}^{\prime}, t\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \\
& =\frac{1}{4 \pi \epsilon} \boldsymbol{\nabla} \int \frac{-\nabla^{\prime} \cdot \mathbf{J}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \tag{1.17}\\
& =\frac{\mathbf{J}_{l}}{\epsilon} .
\end{align*}
$$

This means that the Ampere-Maxwell equation takes the form

$$
\begin{equation*}
\nabla^{2} \mathbf{A}-\epsilon \mu \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu \mathbf{J}+\mu \mathbf{J}_{l}=-\mu \mathbf{J}_{t} \tag{1.18}
\end{equation*}
$$

This justifies the "transverse" in the label transverse gauge.

Bibliography

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975. 1

