Peeter Joot
peeterjoot@protonmail.com

Transverse gauge

Jackson [1] has an interesting presentation of the transverse gauge. I'd like to walk through the details
of this, but first want to translate the preliminaries to SI units (if I had the 3rd edition I'd not have to
do this translation step).

Gauge freedom  The starting point is noting that V - B = 0 the magnetic field can be expressed as a
curl

B=V x A. (1.1)
Faraday’s law now takes the form
0=V xE+ B
ot
=V><E+§t(V><A) (1.2)
=V x (E + 8A> .
ot
Because this curl is zero, the interior sum can be expressed as a gradient
E + %? =-Vo. (1.3)

This can now be substituted into the remaining two Maxwell’s equations.

V-D=p,
oD (1.4)
H-= —
V X J+ o
For Gauss’s law, in simple media, we have
1.5
:eV-<—V<I>—a£‘> (1)

For simple media again, the Ampere-Maxwell equation is
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Expanding V x (V x A) = —V?A+V (V- A) gives
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Maxwell’s equations are now reduced to
2
VA -V V-A+eya£ —eya—A =—uJ
ot ot? (1.8)
V20 + VA =2
ot €
There are two obvious constraints that we can impose
od
V- -A—eu— T =0, (1.9)
or
V- A=0. (1.10)

The first constraint is the Lorentz gauge, which I've played with previously. It happens to be really
nice in a relativistic context since, in vacuum with a four-vector potential A = (®/c, A), that is a
requirement that the four-divergence of the four-potential vanishes (9, A* = 0).

Transverse gauge  Jackson identifies the latter constraint as the transverse gauge, which I'm less fa-
miliar with. With this gauge selection, we have
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V2 = —%. (1.11b)

What's not obvious is the fact that the irrotational (zero curl) contribution due to ® in eq. (1.11a)
cancels the corresponding irrotational term from the current. Jackson uses a transverse and longitu-
dinal decomposition of the current, related to the Helmholtz theorem to allude to this.

That decomposition follows from expanding V2] /R in two ways using the delta function —47d(x —
x') = V?1/R representation, as well as directly
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The first term can be converted to a surface integral

—V/V’- J(x/), Bx' = —V/dA’- JO) , (1.13)
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so provided the currents are either localized or [J|/R — 0 on an infinite sphere, we can make the
identification
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where V x J; = 0 (irrotational, or longitudinal), whereas V - J; = 0 (solenoidal or transverse). The
irrotational property is clear from inspection, and the transverse property can be verified readily

V- (VXx(VxX)=-V-(V-(VAX))

- _ 2x .
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= -V (VX)+ V2V X
=0
Since
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B(x, 1) = R/ Sl (1.16)
we have
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This means that the Ampere-Maxwell equation takes the form
02A
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This justifies the “transverse” in the label transverse gauge.
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