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ECE1236H Microwave and Millimeter-Wave Techniques. Lecture 5: Smith
charts and impedance transformations. Taught by Prof. G.V. Eleftheriades

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course ECE1236H, Microwave and Millimeter-Wave Techniques,

taught by Prof. G.V. Eleftheriades, covering ch. 2 [2] content.

1.1 Short circuited line

A short circuited line, also called a shorted stub, is sketched in fig. 1.1.

Figure 1.1: Short circuited line.

With
ZL = 0, (1.1)

the input impedance is

Zin = Z0
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

= jZ0 tan(βl) (1.2)

For short line sections βl � π/2, or l � λ/4, the input impedance is approximately

(1.3)
Zin = jZ0 tan(βl)
≈ jZ0 sin(βl)
≈ jZ0βl
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Introducing an equivalent inductance defined by Zin = jωLeq, we have

(1.4)

Leq =
Z0

ω
βl

=
Z0

ω

ω

vφ
l

=
Z0l
vφ

.

The inductance per unit length of the line is C = Z0/vφ. An application for this result is that instead
of using inductors, shorted stubs can be used in high frequency applications.

This is also the case for short sections of high impedance line.

1.2 Open circuited line

An open circuited line is sketched in fig. 1.2.

Figure 1.2: Open circuited line.

This time with ZL → ∞ we have

(1.5)Zin = Z0
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

= −jZ0 cot(βl).

This time we have an equivalent capacitance. For short sections with βl � π/2

(1.6)Zin ≈ −j
Z0

βl

Introducing an equivalent capacitance defined by Zin = 1/(jωCeq), we have

(1.7)

Ceq =
βl

ωZ0

=
ω/vφl
ωZ0

=
l

vφZ0
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The capacitance per unit length of the line is C = 1/(Z0vφ).
This is also the case for short sections of low impedance line.

1.3 Half wavelength transformer.

A half wavelength transmission line equivalent circuit is sketched in fig. 1.3.

Figure 1.3: Half wavelength transmission line.

With l = λ/2

(1.8)βl =
2π

λ

λ

2
= π.

Since tan π = 0, the input impedance is

(1.9)Zin = Z0
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

= ZL.

1.4 Quarter wavelength transformer.

A quarter wavelength transmission line equivalent circuit is sketched in fig. 1.4.
With l = λ/4

(1.10)
βl =

2π

λ

λ

4
=

π

2
.

We have tan βl → ∞, so the input impedance is

(1.11)
Zin = Z0

ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

=
Z2

0
ZL

.
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Figure 1.4: Quarter wavelength transmission line.

This relation

Zin =
Z2

0
ZL

, (1.12)

is called the impedance inverter.

• A large impedance is transformed into a small one and vice-versa.

• A short becomes an open and vice-versa.

• A capacitive load becomes inductive and vice-versa.

• If ZL is a series resonant circuit then Zin becomes parallel resonant.

See [1] for an explaination of the term series resonant.

Matching with a λ/4 transformer. Matching for a quarter wavelength transmission line equivalent
circuit is sketched in fig. 1.5.

Figure 1.5: Quarter wavelength transmission line matching.

For maximum power transfer
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Zin =
Z2

0
RL

= RG, (1.13)

so

Z0 =
√

RGRL. (1.14)

We have

|ΓL| =
RL − Z0

RL + Z0
6= 0, (1.15)

and still maximum power is transferred.

1.5 Smith chart

A Smith chart is a graphical tool for making the transformation Γ↔ Zin. Given

Zin = Z0
1 + Γ
1− Γ

, (1.16)

where Γ = ΓLe−2jβl , we begin by normalizing the input impedance, using an overbar to denote that
normalization

Zin → Zin =
Zin

Z0
, (1.17)

so

(1.18)

Zin =
1 + Γ
1− Γ

=
(1 + Γr) + jΓi

(1− Γr)− jΓi

=

(
(1 + Γr) + jΓi

) (
(1− Γr) + jΓi

)
(1− Γr)2 + Γ2

i

=
(1− Γ2

r − Γ2
i ) + jΓi(1− Γr + 1 + Γr)

(1− Γr)2 + Γ2
i

=
(1− |Γ|2) + 2jΓi

(1− Γr)2 + Γ2
i

.

If we let Zin = ΓL + jXL, and equate real and imaginary parts we have

ΓL =
1− |Γ|2

(1− Γr)2 + Γ2
i

XL =
2Γi

(1− Γr)2 + Γ2
i

(1.19)
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It is left as an exercise to demonstrate that these can be rearranged into(
Γr −

ΓL

1 + ΓL

)2

+ Γ2
i =
(

1
1 + ΓL

)2

(Γr − 1)2 +
(

Γi −
1

XL

)2

=
1

X2
L

,

(1.20)

which trace out circles in the Γr, Γi plane, one for the real part of Γ and one for the imaginary part.
This provides a graphical way for implementing the impedance transformation.

Real impedance circle The circle for the real part is centered at

(1.21)
(

ΓL

1 + ΓL
, 0
)

,

with radius
(1.22)

1
1 + ΓL

.

All these circles pass through the point (1, 0), since

(1.23)
ΓL

1 + ΓL
+

1
1 + ΓL

=
1 + ΓL

1 + ΓL
= 1.

For reactive loads where ΓL = 0, we have Γ2
r + Γ2

i = 1, a circle through the origin with unit radius.
For matched loads where ΓL = 1 the circle is centered at (1/2, 0), with radius 1/2.

Imaginary impedance circle The circle obtained by equating imaginary parts are constant reactance
circles with center

(1.24)
(

1,
1

XL

)
,

with radius

(1.25)
1

XL
.

These circles also pass through the point (1, 0). These circles are orthogonal to the constant resis-
tance circles. Some of the features of a Smith chart are sketched in fig. 1.6.

A matlab produced blank Smith chart can be found in fig. 1.7.

Example 1.1: Perform a transformation along a lossless line.
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Figure 1.6: Hand sketched Smith chart.
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Figure 1.7: Blank Smith chart.
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Figure 1.8: Impedence transformation along lossless line.
Given

(1.26)Z =
1 + Γ
1− Γ

,

(1.27)Γ = ΓLe−2jβl ,

and

(1.28)ΓL = |ΓL|ejΘL

The total reflection coefficient is

(1.29)Γ = |ΓL|ej(ΘL−2βl)

If ΓL = |ΓL|ejΘL is plotted on the Smith chart, then in order to move towards the generator, a
subtraction from ΘL of 2βl is required.

Some worked examples that demonstrate this can be found in fig. 1.9, fig. 1.10, and fig. 1.11.
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Figure 1.9: Mapping an impedance value onto a Smith chart.
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Figure 1.10: Moving on the Smith chart towards the generator.
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`
0.38+0.5j

Figure 1.11: Moving on the Smith chart.

Single stub tuning. Refering to fig. 1.12, the procedure for single stub tuning is

1. Plot the load on the Smith Chart.

2. Trace the constant VSWR circle. (blue).

3. Move toward the generator until the constant resistance=1 circle is reached (red). This deter-
mines the distance d.

4. Now the input impedance is of the form ZA = 1 + jX.

5. We now have to use the stub to cancel out the jX and make Zin = 1 (matched).

6. This can be done on the Smith Chart. If X > 0 then we need a capacitive stub (open). If X < 0
then we need an inductive stub (shorted).

7. Say we need a capacitive stub (open): Start from the position of the open. Now the constant
VSWR circle is the exterior unit circle. Move toward the generator until you hit negative X.
This determines the length of the stub l.

Notes:
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20+j25 
Ohm

Figure 1.12: Single stub tuning example
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(a) In step (3) there are two points where the R=1 circle is intersected . Usually we chose the shortest
one

(b) By adding multiples of half-wavelength lengths to either d or l an infinite number of solutions
can be constructed.

Exercise 1.1 Find the Smith chart circle equations

Prove eq. (1.20).
Answer for Exercise 1.1

We can write

(1.30)(1− Γr)2 + Γ2
i =

2Γi

XL
,

or

(1.31)(1− Γr)2 +
(

Γi −
1

XL

)2

=
1(

XL
)2 ,

which is one of the circular equations. For the other, putting the Γr, Γi terms in the numerator, we
have

(1.32)
1− Γ2

r − Γ2
i

ΓL
= (1− Γr)2 + Γ2

i

= 1− 2Γr + Γ2
r + Γ2

i ,

or
(1.33)Γ2

r

(
1 +

1
ΓL

)
− 2Γr + Γ2

i

(
1 +

1
ΓL

)
=

1
ΓL
− 1.

Dividing through by 1 + 1/ΓL = (ΓL + 1)/ΓL, we have

(1.34)
Γ2

r − 2Γr
ΓL

ΓL + 1
+ Γ2

i =
1− ΓL

ΓL

ΓL

ΓL + 1

=
1− ΓL

ΓL + 1
,

or

(1.35)

(
Γr −

ΓL

ΓL + 1

)2

+ Γ2
i =

1− ΓL

ΓL + 1
+
(

ΓL

ΓL + 1

)2

=
1− Γ2

L + Γ2
L(

ΓL + 1
)2

=
1(

ΓL + 1
)2 .
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