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Variational principle with two by two symmetric matrix

I pulled [1], one of too many lonely Dover books, off my shelf and started reading the review chapter.
It posed the following question, which I thought had an interesting subquestion.

Exercise 1.1 Variational principle with two by two symmetric matrix.

Consider a 2 × 2 real symmetric matrix operator O, with an arbitrary normalized trial vector

(1.1)c =
[

cos θ
sin θ

]
.

The variational principle requires that minimum value of ω(θ) = c†Oc is greater than or equal to
the lowest eigenvalue.

1. If that minimum value occurs at ω(θ0), show that this is exactly equal to the lowest eigenvalue.

2. Explain why this is should have been anticipated.

Answer for Exercise 1.1

Part 1. If the operator representation is

(1.2)O =
[

a b
b d

]
,

then the variational product is

(1.3)

ω(θ) =
[
cos θ sin θ

] [a b
b d

] [
cos θ
sin θ

]
=
[
cos θ sin θ

] [a cos θ + b sin θ
b cos θ + d sin θ

]
= a cos2 θ + 2b sin θ cos θ + d sin2 θ

= a cos2 θ + b sin(2θ) + d sin2 θ.

The minimum is given by
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(1.4)
0 =

dω

dθ
= −2a sin θ cos θ + 2b cos(2θ) + 2d sin θ cos θ

= 2b cos(2θ) + (d − a) sin(2θ),

so the extreme values will be found at

(1.5)tan(2θ0) =
2b

a − d
.

Solving for cos(2θ0), with α = 2b/(a − d), we have

(1.6)1 − cos2(2θ) = α2 cos2(2θ),

or

(1.7)

cos2(2θ0) =
1

1 + α2

=
1

1 + 4b2/(a − d)2

=
(a − d)2

(a − d)2 + 4b2 .

So,

cos(2θ0) =
±(a − d)√

(a − d)2 + 4b2

sin(2θ0) =
±2b√

(a − d)2 + 4b2
,

(1.8)

Substituting this back into ω(θ0) is a bit tedious. I did it once on paper, then confirmed with
Mathematica (quantumchemistry/twoByTwoSymmetricVariation.nb). The end result is

(1.9)ω(θ0) =
1
2

(
a + d ±

√
(a − d)2 + 4b2

)
.

The eigenvalues of the operator are given by

(1.10)

0 = (a − λ)(d − λ) − b2

= λ2 − (a + d)λ + ad − b2

=
(

λ − a + d
2

)2

−
(

a + d
2

)2

+ ad − b2

=
(

λ − a + d
2

)2

− 1
4
(
(a − d)2 + 4b2) ,

so the eigenvalues are exactly the values eq. (1.9) as stated by the problem statement.
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Part 2. If the eigenvectors are e1, e2, the operator can be diagonalized as

(1.11)O = UDUT,

where U =
[
e1 e2

]
, and D has the eigenvalues along the diagonal. The energy function ω can

now be written

(1.12)ω = cTUDUTc
= (UTc)TDUTc.

We can show that the transformed vector UTc is still a unit vector

(1.13)
UTc =

[
eT

1
eT

2

]
c

=
[

eT
1 c

eT
2 c

]
,

so

(1.14)

∣∣∣UTc
∣∣∣2 = cTe1eT

1 c + cTe2eT
2 c

= cT
(

e1eT
1 + e2eT

2

)
c

= cTc
= 1,

so the transformed vector can be written as

(1.15)UTc =
[

cos φ
sin φ

]
,

for some φ. With such a representation we have

(1.16)

ω =
[
cos φ sin φ

] [λ1 0
0 λ2

] [
cos φ
sin φ

]
=
[
cos φ sin φ

] [λ1 cos φ
λ2 sin φ

]
= λ1 cos2 φ + λ2 sin2 φ.

This has it’s minimums where 0 = sin(2φ)(λ2 − λ1). For the non-degenerate case, two zeros at
φ = nπ/2 for integral n. For φ = 0, π/2, we have

(1.17)c =
[

1
0

]
,
[

0
1

]
.

We see that the extreme values of ω occur when the trial vectors c are eigenvectors of the operator.
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