Peeter Joot
 peeterjoot@protonmail.com

Variational principle with two by two symmetric matrix

I pulled [1], one of too many lonely Dover books, off my shelf and started reading the review chapter. It posed the following question, which I thought had an interesting subquestion.

Exercise 1.1 Variational principle with two by two symmetric matrix.

Consider a 2×2 real symmetric matrix operator \mathbf{O}, with an arbitrary normalized trial vector

$$
\mathbf{c}=\left[\begin{array}{c}
\cos \theta \tag{1.1}\\
\sin \theta
\end{array}\right] .
$$

The variational principle requires that minimum value of $\omega(\theta)=\mathbf{c}^{\dagger} \mathbf{O c}$ is greater than or equal to the lowest eigenvalue.

1. If that minimum value occurs at $\omega\left(\theta_{0}\right)$, show that this is exactly equal to the lowest eigenvalue.
2. Explain why this is should have been anticipated.

Answer for Exercise 1.1

Part 1. If the operator representation is

$$
\mathbf{O}=\left[\begin{array}{ll}
a & b \tag{1.2}\\
b & d
\end{array}\right],
$$

then the variational product is

$$
\begin{align*}
\omega(\theta) & =\left[\begin{array}{ll}
\cos \theta & \sin \theta
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right] \\
& =\left[\begin{array}{ll}
\cos \theta & \sin \theta
\end{array}\right]\left[\begin{array}{l}
a \cos \theta+b \sin \theta \\
b \cos \theta+d \sin \theta
\end{array}\right] \tag{1.3}\\
& =a \cos ^{2} \theta+2 b \sin \theta \cos \theta+d \sin ^{2} \theta \\
& =a \cos ^{2} \theta+b \sin (2 \theta)+d \sin ^{2} \theta .
\end{align*}
$$

The minimum is given by

$$
\begin{align*}
0 & =\frac{d \omega}{d \theta} \tag{1.4}\\
& =-2 a \sin \theta \cos \theta+2 b \cos (2 \theta)+2 d \sin \theta \cos \theta \\
& =2 b \cos (2 \theta)+(d-a) \sin (2 \theta),
\end{align*}
$$

so the extreme values will be found at

$$
\begin{equation*}
\tan \left(2 \theta_{0}\right)=\frac{2 b}{a-d} . \tag{1.5}
\end{equation*}
$$

Solving for $\cos \left(2 \theta_{0}\right)$, with $\alpha=2 b /(a-d)$, we have

$$
\begin{equation*}
1-\cos ^{2}(2 \theta)=\alpha^{2} \cos ^{2}(2 \theta) \tag{1.6}
\end{equation*}
$$

or

$$
\begin{align*}
\cos ^{2}\left(2 \theta_{0}\right) & =\frac{1}{1+\alpha^{2}} \\
& =\frac{1}{1+4 b^{2} /(a-d)^{2}} \tag{1.7}\\
& =\frac{(a-d)^{2}}{(a-d)^{2}+4 b^{2}} .
\end{align*}
$$

So,

$$
\begin{align*}
& \cos \left(2 \theta_{0}\right)=\frac{ \pm(a-d)}{\sqrt{(a-d)^{2}+4 b^{2}}} \\
& \sin \left(2 \theta_{0}\right)=\frac{ \pm 2 b}{\sqrt{(a-d)^{2}+4 b^{2}}} \tag{1.8}
\end{align*}
$$

Substituting this back into $\omega\left(\theta_{0}\right)$ is a bit tedious. I did it once on paper, then confirmed with Mathematica (quantumchemistry/twoByTwoSymmetricVariation.nb). The end result is

$$
\begin{equation*}
\omega\left(\theta_{0}\right)=\frac{1}{2}\left(a+d \pm \sqrt{(a-d)^{2}+4 b^{2}}\right) . \tag{1.9}
\end{equation*}
$$

The eigenvalues of the operator are given by

$$
\begin{align*}
0 & =(a-\lambda)(d-\lambda)-b^{2} \\
& =\lambda^{2}-(a+d) \lambda+a d-b^{2} \\
& =\left(\lambda-\frac{a+d}{2}\right)^{2}-\left(\frac{a+d}{2}\right)^{2}+a d-b^{2} \tag{1.10}\\
& =\left(\lambda-\frac{a+d}{2}\right)^{2}-\frac{1}{4}\left((a-d)^{2}+4 b^{2}\right),
\end{align*}
$$

so the eigenvalues are exactly the values eq. (1.9) as stated by the problem statement.

Part 2. If the eigenvectors are $\mathbf{e}_{1}, \mathbf{e}_{2}$, the operator can be diagonalized as

$$
\begin{equation*}
\mathbf{O}=U D U^{\mathrm{T}}, \tag{1.11}
\end{equation*}
$$

where $U=\left[\begin{array}{ll}\mathbf{e}_{1} & \mathbf{e}_{2}\end{array}\right]$, and D has the eigenvalues along the diagonal. The energy function ω can now be written

$$
\begin{align*}
\omega & =\mathbf{c}^{\mathrm{T}} U D U^{\mathrm{T}} \mathbf{c} \tag{1.12}\\
& =\left(U^{\mathrm{T}} \mathbf{c}\right)^{\mathrm{T}} D U^{\mathrm{T}} \mathbf{c} .
\end{align*}
$$

We can show that the transformed vector $U^{\mathrm{T}} \mathbf{c}$ is still a unit vector

$$
\begin{align*}
U^{\mathrm{T}} \mathbf{c} & =\left[\begin{array}{l}
\mathbf{e}_{1}^{\mathrm{T}} \\
\mathbf{e}_{2}^{\mathrm{T}}
\end{array}\right] \mathbf{c} \tag{1.13}\\
& =\left[\begin{array}{l}
\mathbf{e}_{\mathbf{e}}^{\mathrm{T}} \mathbf{c} \\
\mathbf{e}_{2}^{\mathrm{T}} \mathbf{c}
\end{array}\right],
\end{align*}
$$

so

$$
\begin{align*}
\left|U^{\mathrm{T}} \mathbf{c}\right|^{2} & =\mathbf{c}^{\mathrm{T}} \mathbf{e}_{1} \mathbf{e}_{1}^{\mathrm{T}} \mathbf{c}+\mathbf{c}^{\mathrm{T}} \mathbf{e}_{2} \mathbf{e}_{2}^{\mathrm{T}} \mathbf{c} \\
& =\mathbf{c}^{\mathrm{T}}\left(\mathbf{e}_{1} \mathbf{e}_{1}^{\mathrm{T}}+\mathbf{e}_{2} \mathbf{e}_{2}^{\mathrm{T}}\right) \mathbf{c} \tag{1.14}\\
& =\mathbf{c}^{\mathrm{T}} \mathbf{c} \\
& =1,
\end{align*}
$$

so the transformed vector can be written as

$$
U^{\mathrm{T}} \mathbf{c}=\left[\begin{array}{c}
\cos \phi \tag{1.15}\\
\sin \phi
\end{array}\right],
$$

for some ϕ. With such a representation we have

$$
\begin{align*}
\omega & =\left[\begin{array}{ll}
\cos \phi & \sin \phi
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{c}
\cos \phi \\
\sin \phi
\end{array}\right] \\
& =\left[\begin{array}{ll}
\cos \phi & \sin \phi
\end{array}\right]\left[\begin{array}{c}
\lambda_{1} \cos \phi \\
\lambda_{2} \sin \phi
\end{array}\right] \tag{1.16}\\
& =\lambda_{1} \cos ^{2} \phi+\lambda_{2} \sin ^{2} \phi .
\end{align*}
$$

This has it's minimums where $0=\sin (2 \phi)\left(\lambda_{2}-\lambda_{1}\right)$. For the non-degenerate case, two zeros at $\phi=n \pi / 2$ for integral n. For $\phi=0, \pi / 2$, we have

$$
\mathbf{c}=\left[\begin{array}{l}
1 \tag{1.17}\\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

We see that the extreme values of ω occur when the trial vectors \mathbf{c} are eigenvectors of the operator.

Bibliography

[1] Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction to advanced electronic structure theory. Dover publications, 1989. 1

