Peeter Joot
 peeterjoot@protonmail.com

Vector Area

One of the results of this problem is required for a later one on magnetic moments that I'd like to do.

Exercise 1.1 Vector Area. ([1] pr. 1.61)

The integral

$$
\begin{equation*}
\mathbf{a}=\int_{S} d \mathbf{a} \tag{1.1}
\end{equation*}
$$

is sometimes called the vector area of the surface S.

1. Find the vector area of a hemispherical bowl of radius R.
2. Show that $\mathbf{a}=0$ for any closed surface.
3. Show that \mathbf{a} is the same for all surfaces sharing the same boundary.
4. Show that

$$
\begin{equation*}
\mathbf{a}=\frac{1}{2} \oint \mathbf{r} \times d \mathbf{l}, \tag{1.2}
\end{equation*}
$$

where the integral is around the boundary line.
5. Show that

$$
\begin{equation*}
\oint(\mathbf{c} \cdot \mathbf{r}) d \mathbf{l}=\mathbf{a} \times \mathbf{c} \tag{1.3}
\end{equation*}
$$

Answer for Exercise 1.1

Part 1.

$$
\begin{align*}
\mathbf{a} & =\int_{0}^{\pi / 2} R^{2} \sin \theta d \theta \int_{0}^{2 \pi} d \phi(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \\
& =R^{2} \int_{0}^{\pi / 2} d \theta \int_{0}^{2 \pi} d \phi\left(\sin ^{2} \theta \cos \phi, \sin ^{2} \theta \sin \phi, \sin \theta \cos \theta\right) \\
& =2 \pi R^{2} \int_{0}^{\pi / 2} d \theta \mathbf{e}_{3} \sin \theta \cos \theta \tag{1.4}\\
& =\pi R^{2} \mathbf{e}_{3} \int_{0}^{\pi / 2} d \theta \sin (2 \theta) \\
& =\left.\pi R^{2} \mathbf{e}_{3}\left(\frac{-\cos (2 \theta)}{2}\right)\right|_{0} ^{\pi / 2} \\
& =\pi R^{2} \mathbf{e}_{3}(1-(-1)) / 2 \\
& =\pi R^{2} \mathbf{e}_{3} .
\end{align*}
$$

Part 2. As hinted in the original problem description, this follows from

$$
\begin{equation*}
\int d V \nabla T=\oint T d \mathbf{a} \tag{1.5}
\end{equation*}
$$

simply by setting $T=1$.
Part 3. Suppose that two surfaces sharing a boundary are parameterized by vectors $\mathbf{x}(u, v), \mathbf{x}(a, b)$ respectively. The area integral with the first parameterization is

$$
\begin{align*}
\mathbf{a} & =\int \frac{\partial \mathbf{x}}{\partial u} \times \frac{\partial \mathbf{x}}{\partial v} d u d v \\
& =\epsilon_{i j k} \mathbf{e}_{i} \int \frac{\partial x_{j}}{\partial u} \frac{\partial x_{k}}{\partial v} d u d v \\
& =\epsilon_{i j k} \mathbf{e}_{i} \int\left(\frac{\partial x_{j}}{\partial a} \frac{\partial a}{\partial u}+\frac{\partial x_{j}}{\partial b} \frac{\partial b}{\partial u}\right)\left(\frac{\partial x_{k}}{\partial a} \frac{\partial a}{\partial v}+\frac{\partial x_{k}}{\partial b} \frac{\partial b}{\partial v}\right) d u d v \tag{1.6}\\
& =\epsilon_{i j k} \mathbf{e}_{i} \int d u d v\left(\frac{\partial x_{j}}{\partial a} \frac{\partial a}{\partial u} \frac{\partial x_{k}}{\partial a} \frac{\partial a}{\partial v}+\frac{\partial x_{j}}{\partial b} \frac{\partial b}{\partial u} \frac{\partial x_{k}}{\partial b} \frac{\partial b}{\partial v}+\frac{\partial x_{j}}{\partial b} \frac{\partial b}{\partial u} \frac{\partial x_{k}}{\partial a} \frac{\partial a}{\partial v}+\frac{\partial x_{j}}{\partial a} \frac{\partial a}{\partial u} \frac{\partial x_{k}}{\partial b} \frac{\partial b}{\partial v}\right) \\
& =\epsilon_{i j k} \mathbf{e}_{i} \int d u d v\left(\frac{\partial x_{j}}{\partial a} \frac{\partial x_{k}}{\partial a} \frac{\partial a}{\partial u} \frac{\partial a}{\partial v}+\frac{\partial x_{j}}{\partial b} \frac{\partial x_{k}}{\partial b} \frac{\partial b}{\partial u} \frac{\partial b}{\partial v}\right)+\epsilon_{i j k} \mathbf{e}_{i} \int d u d v\left(\frac{\partial x_{j}}{\partial b} \frac{\partial x_{k}}{\partial a} \frac{\partial b}{\partial u} \frac{\partial a}{\partial v}-\frac{\partial x_{k}}{\partial a} \frac{\partial x_{j}}{\partial b} \frac{\partial a}{\partial u} \frac{\partial b}{\partial v}\right) .
\end{align*}
$$

In the last step a j, k index swap was performed for the last term of the second integral. The first integral is
zero, since the integrand is symmetric in j, k. This leaves

$$
\begin{align*}
\mathbf{a} & =\epsilon_{i j k} \mathbf{e}_{i} \int d u d v\left(\frac{\partial x_{j}}{\partial b} \frac{\partial x_{k}}{\partial a} \frac{\partial b}{\partial u} \frac{\partial a}{\partial v}-\frac{\partial x_{k}}{\partial a} \frac{\partial x_{j}}{\partial b} \frac{\partial a}{\partial u} \frac{\partial b}{\partial v}\right) \\
& =\epsilon_{i j k} \mathbf{e}_{i} \int \frac{\partial x_{j}}{\partial b} \frac{\partial x_{k}}{\partial a}\left(\frac{\partial b}{\partial u} \frac{\partial a}{\partial v}-\frac{\partial a}{\partial u} \frac{\partial b}{\partial v}\right) d u d v \\
& =\epsilon_{i j k} \mathbf{e}_{i} \int \frac{\partial x_{j}}{\partial b} \frac{\partial x_{k}}{\partial a} \frac{\partial(b, a)}{\partial(u, v)} d u d v \tag{1.7}\\
& =-\int \frac{\partial \mathbf{x}}{\partial b} \times \frac{\partial \mathbf{x}}{\partial a} d a d b \\
& =\int \frac{\partial \mathbf{x}}{\partial a} \times \frac{\partial \mathbf{x}}{\partial b} d a d b .
\end{align*}
$$

However, this is the area integral with the second parameterization, proving that the area-integral for any given boundary is independant of the surface.

Part 4. Having proven that the area-integral for a given boundary is independent of the surface that it is evaluated on, the result follows by illustration as hinted in the full problem description. Draw a "cone", tracing a vector \mathbf{x}^{\prime} from the origin to the position line element, and divide that cone up into infinitesimal slices as sketched in fig. 1.1.

Figure 1.1: Cone configuration.
The area of each of these triangular slices is

$$
\begin{equation*}
\frac{1}{2} \mathbf{x}^{\prime} \times d \mathbf{I}^{\prime} \tag{1.8}
\end{equation*}
$$

Summing those triangles proves the result.
Part 5. As hinted in the problem, this follows from

$$
\begin{equation*}
\int \boldsymbol{\nabla} T \times d \mathbf{a}=-\oint T d \mathbf{l} . \tag{1.9}
\end{equation*}
$$

Set $T=\mathbf{c} \cdot \mathbf{r}$, for which

$$
\begin{align*}
\boldsymbol{\nabla} T & =\mathbf{e}_{k} \partial_{k} c_{m} x_{m} \\
& =\mathbf{e}_{k} c_{m} \delta_{k m} \tag{1.10}\\
& =\mathbf{e}_{k} c_{k} \\
& =\mathbf{c},
\end{align*}
$$

so
so

$$
\begin{equation*}
\mathbf{c} \times \mathbf{a}=-\oint(\mathbf{c} \cdot \mathbf{r}) d \mathbf{l}, \tag{1.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\oint(\mathbf{c} \cdot \mathbf{r}) d \mathbf{l}=\mathbf{a} \times \mathbf{c} \tag{1.13}
\end{equation*}
$$

Bibliography

[1] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999. 1.1

