
Peeter Joot
peeterjoot@protonmail.com

ECE1236H Microwave and Millimeter-Wave Techniques. Lecture 8:
Continuum and other transformers. Taught by Prof. G.V. Eleftheriades

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course ECE1236H, Microwave and Millimeter-Wave Techniques,

taught by Prof. G.V. Eleftheriades, covering ch. 1 [1] content.

1.1 Continuum transformer

A non-discrete impedance matching transformation, as sketched in fig. 1.1, is also possible.

Figure 1.1: Tapered impedance matching.

∆Γ =
(Z + ∆Z)− Z
(Z + ∆Z) + Z

=
∆Z
2Z

(1.1)

∆Z → 0 (1.2)
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(1.3)

dΓ =
dZ
2Z

=
1
2

d(ln Z)
dz

=
Z0

Z
d(Z/Z0)

dz

=
1
Z

dZ
dz

.

Hence as we did for multisection transformers, associate ∆Γ with e−2jβz as sketched in fig. 1.2.

Figure 1.2: Reflection coefficient over an interval

assuming small reflections (i.e. Z(z) is a slowly varying (adiabatic). Then

(1.4)
Γ(ω) =

∫ L

0
e−2jβzdΓ

=
1
2

∫ L

0
e−2jβz d(ln Z)

dz
dz

This supplies the means to calculate the reflection coefficient for any impedance curve. As with
the step impedance matching process, it is assumed that only first order reflections are of interest.

1.2 Exponential taper

Let
Z(z) = Z0eaz, 0 < z < L (1.5)

subject to
Z(0) = Z0

Z(L) = Z0eaL = ZL,
(1.6)

which gives

ln
ZL

Z0
= aL, (1.7)
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or
a =

1
L

ln
ZL

Z0
(1.8)

Also

d
dz

ln
ZL

Z0
=

d
dz

(az) = a, (1.9)

Hence

(1.10)

Γ(ω) =
1
2

∫ L

0
e−2jβz d

dz
ln

ZL

Z0
dz

=
a
2

∫ L

0
e−2jβzdz

=
1

2L
ln

ZL

Z0

e−2jβz

−2jβ

∣∣∣∣L
0

=
1

2Lβ
ln

ZL

Z0

1− e−2jβL

2j

=
1
2

ln
ZL

Z0
e−jβL sin(βL)

βL
,

or

(1.11)Γ(ω) =
1
2

ln
ZL

Z0
e−jβL sinc(βL).

1. β is constant with Z varying: this is good only for TEM lines.

2. |Γ| decreases with increasing length.

3. An electrical length βL > π, is required to minimize low frequency mismatch (L > λ/2).

This is sketched in fig. 1.3.

Figure 1.3: Exponential taper reflection coefficient.

Want:
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(1.12)βL = π,

or
(1.13)

ωc

vφ
L = π

where ωc is the cutoff frequency. This gives

(1.14)ωc =
πvφ

L
.

Triangular Taper

Z(z) =

{
Z0e2(z/L)2 ln(ZL/Z0) 0 ≤ z ≤ L/2
Z0e(4z/L−2z2−1) ln(ZL/Z0) L/2 ≤ z ≤ L

(1.15)

d
dz

ln(Z/Z0) =
{

(4z/L2) ln(ZL/Z0) 0 ≤ z ≤ L/2
(4/L− 4z/L2) ln(ZL/Z0) L/2 ≤ z ≤ L (1.16)

In this case

(1.17)Γ(ω) =
1
2

e−βL ln
ZL

Z0
e−jβL sinc2(βL/2).

Compared to the exponential taper sinc(βL) for the βL > 2π the peaks of |Γ| are lower, but the
first null occurs at βL = 2π whereas for the exponential taper it occurs at βL = π. This is sketched in
fig. 1.4. The price to pay for this is that the zero is at 2π so we have to make it twice as long to get the
ripple down.

Figure 1.4: Triangular taper impedance curve.

Klopfenstein Taper For a given taper length L, the Klopfenstein taper is optimum in the sense that
the reflection coefficient in the passband is minimum. Alternatively, for a given minimum reflection
coefficient in the passband, the Klopfenstein taper yields the shortest length L.

Definition:

ln Z =
1
2

ln(Z0ZL) +
Γ0

cosh A
A2φ(2z/L− 1, A), 0 ≤ z ≤ L, (1.18)
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where

φ(x, A) =
∫ x

0

I1(A
√

1− y2)
A
√

1− y2
dy, |x| ≤ 1. (1.19)

Here I1(x) is the modified Bessel function. Note that

φ(0, A) = 0
φ(x, 0) = x/2

φ(1, A) =
cosh A− 1

A2

(1.20)

The resulting reflection coefficient is

Γ(ω) =

 Γ0e−jβL cos
√

(βL)2−A2

cosh A βL > A

Γ0e−jβL cos
√

A2−(βL)2

cosh A βL < A
, (1.21)

where as usual

Γ0 =
ZL − Z0

ZL + Z0
≈ 1

2
ln(ZL/Z0). (1.22)

The passband is defined by βL ≥ A and the maximum ripple in the passband is

Γm =
Γ0

cosh A
. (1.23)

Example 1.1: Triangular taper vs. exponential taper vs. Klopfenstein taper.

Design a triangular taper, an exponential taper, and a Klopfenstein taper (with Γm = 0.02 ) to
match a 50Ω load to a 100Ω line.

• Triangular taper:

Z(z) =

{
Z0e2(z/L)2 ln ZL/Z0 0 ≤ z ≤ L/2
Z0e(4z/L−2z2/L2−1) ln ZL/Z0 L/2 ≥ z ≥ L

(1.24)

The resulting Γ is

|Γ| =
1
2

ln(ZL/Z0) sinc2 (βL/2) . (1.25)

• Exponential taper:
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Z(z) = Z0eaz, 0 ≤ z ≤ L

a =
1
L

ln(ZL/Z0) =
0.693

L

|Γ| =
1
2

ln(ZL/Z0) sinc(βL)

(1.26)

• Klopfenstein taper:

Z(z) =
1
2

ln(ZL/Z0) = 0.346

A = cosh−1
(

Γ0

Γm

)
= cosh−1

(
0.346
0.02

)
= 3.543

|Γ| = Γ0
cos

√
(βL)2 − A2

cosh A
,

(1.27)

The passband βL > A = 3.543 = 1.13π. The impedance Z(z) must be evaluated numeri-
cally.

To illustrate some of the differences, we are referred to fig. 5.21 [1]. It is noted that

1. The exponential taper has the lowest cutoff frequency βL = π. Then is the Klopfenstein
taper which is close βL = 1.13π. Last is the triangular with βL = 2π.

2. The Klopfenstein taper has the lowest |Γ| in the passband and meets the spec of Γm = 0.02.
The worst |Γ| in the passband is from the exponential taper and the triangular ripple is
between the two others.
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