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1
E L E C T RO M AG N E T I C F I E L D S

1.1 maxwell’s equations in integral form

Faraday’s law For the integration surface sketched in fig. 1.1 Faraday’s law is

Figure 1.1: Stokes integration surface

(1.1)
∫

C
E · dl = −

∂

∂t

"
S

B · n̂dS

Ampere’s law

(1.2)
∫

H · dl =

"
J · n̂dS +

∂

∂t

"
D · n̂dS

On the RHS we have the sum of the conduction and displacement currents respectively.

Units

• E V/m : Electric field

• H A/m : Magnetic field

• B Weber/m2 : Magnetic flux density

• D Cb/m2 : Electric flux density (Coloumbs/meter-squared)

• J A/m2 : Electric current density

• ρ Cb/m3 : Electric charge density

3



4 electromagnetic fields

Charge conservation law Consider a closed surface S with interior volume V, as sketched in
fig. 1.2. The charge conservation relation is

Figure 1.2: Divergence theorem integration volume

(1.3)
	

J · n̂dS = −
∂

∂t

∫
ρdV

Maxwell’s equations in integral form Faraday’s

(1.4)
∫

C
E · dl = −

∂

∂t

"
S

B · n̂dS

Ampere-Maxwell’s law:

(1.5)
∫

H · dl =

"
J · n̂dS +

∂

∂t

"
D · n̂dS

Charge conservation:

(1.6)
	

J · n̂dS = −
∂

∂t

∫
ρdV

1.2 maxwell’s equations in differential form

Useful calculus theorems

Stokes’ theorem For the integration surface sketched in fig. 1.1 the 3D Stokes theorem state-
ment is

(1.7)
∮

C
F · dl =

"
S

(∇ × F) · n̂dS
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Gauss’s theorem (divergence theorem) Integrating over a closed surface

(1.8)
	

F · n̂dS =

$
∇ · FdV

• ∇ f : vector ( f is a scalar ) : Gradient of a scalar.

• ∇ · F : vector ( F is a vector ) : Divergence of a vector.

• ∇ × F : vector ( F is a vector ) : Curl of a vector.

Faraday’s law Referring again to fig. 1.1, and Stokes theorem, Faraday’s law

(1.9)
∮

C
E · dl = −

∂

∂t

"
S

B · n̂dS

can be expressed using Stokes’s theorem as

(1.10)

∮
C

E · dl =

"
S

(∇ × E) · n̂dS

= −
∂

∂t

"
S

B · n̂dS .

Hence

(1.11)
∮

C

(
∇ × E +

∂

∂t
B
)
· n̂dS = 0,

or

(1.12)∇ × E = −
∂B
∂t
,

which is Faraday’s law in differential form.
Similarly, Ampere’s law in differential form is

(1.13)∇ ×H = J +
∂D
∂t
.

Charge conservation law Starting with

(1.14)
	

J · n̂dS = −
∂

∂t

∫
ρdV,

and using Gauss’s theorem

(1.15)

	
J · n̂dS =

∫
V
∇ · JdV

= −
∂

∂t

∫
ρdV,
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or

(1.16)
∫

V

(
∇ · J +

∂ρ

∂t

)
dV = 0.

Hence

(1.17)∇ · J = −
∂ρ

∂t
.

Summary: Maxwell’s equations in differential form Faraday’s law, Ampere-Maxwell law, and
charge conservation law respectively:

(1.18a)∇ × E = −
∂B
∂t

(1.18b)∇ ×H = J +
∂D
∂t

(1.18c)∇ · J = −
∂ρ

∂t

Derived laws Provides a vector F has second derivatives that commute, we must have

(1.19)∇ · (∇ × F) = 0,

Faraday’s law

(1.20)∇ × E = −
∂B
∂t

for a continuous electric field E gives

(1.21)∇ · (∇ × E) = −
∂

∂t
∇ · B

= 0.

The divergence must be independent of time or constant. If constant, we can probably assume
that a non-zero constant isn’t physically relevant, in which case we would have

(1.22)∇ · B = 0.

Similarly, Ampere’s law gives
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(1.23)

0 = ∇ · (∇ ×H)

= ∇ ·

(
J +

∂D
∂t

)
= −

∂ρ

∂t
+
∂

∂t
∇ · D,

where the last line follows from charge conservation. This means that the quantity

(1.24)−ρ + ∇ · D,

is constant or independent of time. Again, assuming a non-zero constant value or time inde-
pendent value isn’t physically relevant, we have

(1.25)∇ · D = ρ.

Comment: Peeter: It is interesting to see ∇ ·B = 0, and ∇ ·D = ρ presented as derived values,
but it seems to me that some hand waving through the time independent and non-zero constant
cases is required to get there.

Summary Independent equations, Faraday’s, Ampere-Maxwell, and charge conservation:

(1.26a)∇ × E = −
∂B
∂t

(1.26b)∇ ×H = J +
∂D
∂t

(1.26c)∇ · J = −
∂ρ

∂t

Derived equations (no magnetic charges, and Gauss’s law respectively),

(1.27a)∇ · B = 0

(1.27b)∇ · D = ρ

Note can consider Gauss’s law as the third independent equation, in which case the charge
conservation law becomes a derived law.
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1.3 constitutive relations

Consider the number of unknowns in this mix of equations: E,H,D,B, J, and ρ. Five vectors
and one scalar: 16 unknowns. We have only 3 + 3 + 1 = 7 equations, so can consider Maxwell’s
equations to have an indeterminate form.

Further information is provided by the nature of the medium in which the fields exist.

B = F1

(
E,
∂E
∂t
,

∣∣∣∣∣∂E
∂t

∣∣∣∣∣2, · · ·H, ∂H
∂t
,

∣∣∣∣∣∂H
∂t

∣∣∣∣∣2, · · ·)
D = F2

(
E,
∂E
∂t
,

∣∣∣∣∣∂E
∂t

∣∣∣∣∣2, · · ·H, ∂H
∂t
,

∣∣∣∣∣∂H
∂t

∣∣∣∣∣2, · · ·)
J = F3

(
E,
∂E
∂t
,

∣∣∣∣∣∂E
∂t

∣∣∣∣∣2, · · ·H, ∂H
∂t
,

∣∣∣∣∣∂H
∂t

∣∣∣∣∣2, · · ·) ,
(1.28)

where F1,F2,F3 are designated vector functions which characterize the medium where the
fields exist.

Assume

(i) The medium is stationary. i.e. F1,F2 and F3 do not depend on time.

(ii) The medium is linear. i.e. there is no dependence upon E2,H2,
∣∣∣∂E
∂t

∣∣∣2, ∣∣∣∂H
∂t

∣∣∣2 and higher
order power terms.

(iii) The medium is homogeneous. i.e. there is no x, y, z variation of F1,F2 and F3.

(iv) The medium responds independently to E and H. Then one can write

B = µ ·H
D = ε ·E
J = σ ·E

(1.29)

where µ, ε and σ are the magnetic permeability, electric permittivity, and electric conduc-
tivity tensors respectively. The last equation above is Ohm’s law.

(v) If the medium is also isotropic, meaning that µ, ε and σ are scalars, then we have simple
media described by

B = µH
D = εE
J = σE.

(1.30)
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In simple media we now have another 3 + 3 + 3 = 9 equations. With 7 equations from
Maxwell’s laws we have 9 + 7 = 16 equations and 16 unknowns.

An example of a simple medium is free space where we have

µ = µ0 = 4π × 10−7H/m

ε = ε0 = 8.854 × 10−12F/m

σ = 0.

(1.31)

Maxwell’s equations in simple media are

∇ ×E = −µ
∂H
∂t

∇ ×H =

(
σ + ε

∂

∂t

)
E

σ∇ ·E = −
∂ρ

∂t
.

(1.32)

Example 1.1: Anisotropic media

Here D is not parallel with E, and B is not parallel with H.

• Crystals in the principle axis coordinate system can be described by diagonal tensors
of the form

(1.33)ε =


εx 0 0

0 εy 0

0 0 εz

 .
This is electric anisotropy.

• Uniaxial crystals where εx = εy, so that

(1.34)ε =


ε 0 0

0 ε 0

0 0 εz

 .
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The z axis is the optical axis. Positive uniaxial crystal if εz > ε and negative uniaxial
crystal if εz < ε.

• Biaxial crystals when εx , εy , εz.

Example 1.2: Bi-anisotropic media

D = ε ·E + ζ ·H

B = J ·E + µ ·H
(1.35)

Example 1.3

This is the case when ε, ζ, J and µ are all scalar quantities. i.e.

D = εE + ζH
B = JE + µH

(1.36)

An example is Chiral media like sugars, and DNA, where we have

D = εE − χ
∂H
∂t

B = µH + χ
∂E
∂t
,

(1.37)

where χ is the chiral parameter.

Simple medium When we have a stationary, linear, homogeneous, and isotropic medium
where

B = µH
D = εE
J = σE

(1.38)

then
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(i) If σ = 0 : dielectric.

(ii) If σ→ ∞ : conductor.

(iii) ε (F/m): Permittivity. εr = ε/ε0 is the relative permittivity (dielectric constant).

(iv) µ (H/m) : Permeability. µr = µ/µ0 is the relative permeability.

Some material types:

• Non-magnetic materials, µr = 1.

• Diamagnetic materials, µr < 1. This is not common.

• Paramagnetic materials, µr > 1.

• Ferromagnetic materials, µr � 1.

1.4 plane waves

In simple media with no sources

∇ ×E = −
∂B
∂t

= −µ
∂H
∂t
, (1.39a)

∇ ·H = 0. (1.39b)

∇ ×H = J +
∂D
∂t

=

(
σ + ε

∂

∂t

)
E (1.39c)

∇ ·E =
ρ

ε
= 0 (1.39d)

Here J = σE is considered to be an induced current, and the ρ/ε term vanishes since we have
no sources.

From Faraday’s law eq. (1.39a)
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(1.40)

∇ × (∇ × E) = −µ
∂

∂t
(∇ ×H)

= −µ
∂

∂t

(
σ + ε

∂

∂t

)
E

= −µσ
∂E
∂t
− εµ

∂2E
∂t2 .

We can also use the vector identity

(1.41)∇ × (∇ × F) = ∇ (∇ · F) − ∇2F,

so

(1.42)∇ × (∇ × E) = ∇ (���∇ · E) − ∇2E,

or

(1.43)0 = ∇2E − µσ
∂E
∂t
− εµ

∂2E
∂t2 .

The µσ∂E/∂t term is a damping contribution.
Similarly for the magnetic field

(1.44)0 = ∇2H − µσ
∂H
∂t
− εµ

∂2H
∂t2 .

This is the wave or Helmholtz equation.
Note that for the no loss condition σ = 0, we have the undamped wave equations

(1.45a)∇
2E = εµ

∂2E
∂t2 .

(1.45b)∇
2H = εµ

∂2H
∂t2 .

This is one wave equation for each of Ex, Ey, Ez,Hx,Hy and Hz.

Propagation in one direction Consider the undamped propagation along the z direction of
Ex(z, t), which must satisfy

(1.46)∇
2Ex = εµ

∂2Ex

∂t2 ,

or

(1.47)
∂2Ex

∂z2 = εµ
∂2Ex

∂t2 .
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This is analogous to the voltage transmission line equation

(1.48)
∂2V
∂z2 = LC

∂2V
∂t2 ,

With solution

V(z, t) = V+
0 f (z − vφt) + V−0 f (z + vφt), (1.49)

where vφ = 1/
√

LC is the phase velocity, f (z− vφt) is the forward wave, and f (z + vφt) is the
reflected wave. By analogy the solution to the 1D wave equation is

Ex(z, t) = E+
0 f (z − vφt) + E−0 f (z + vφt), (1.50)

where vφ = 1/
√
εµ is the phase velocity.

For myself, the transmission line equation is something that I only encountered in this class
(in a later lecture), so this analogy isn’t a great one. That said, wave equation solutions are very
familiar, so not much motivation for the structure of the solution is really required.

More rigorous derivation of the 1D solution Suppose that we assume the form of the solution
is

E = E0 f (z − vφt), (1.51)

where E0 is a constant vector, so this describes a wave propagation in the z-direction, but
without a-priori knowledge of the direction of this vector in space.

For source free media, we have

(1.52)∇ · (E0 f ) = ∇ f · E0 + f���∇ · E
= (ẑ f ′) · E0.

Because E0 · ẑ = 0, the vector E0 is perpendicular to the direction of propagation ( z ). The
next task is to find the magnetic field that couples to this electric field solution. Suppose the
coordinate axis are picked so that

E(z, t) = E0Ex(z ± vφt). (1.53)
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Using Faraday’s law ∇ ×E = −µ∂H/∂t gives

(1.54)

∇ × (E0Ex) = (∇ × E0)Ex − E0 × ∇Ex

= −E0 × ∇Ex

= −E0 × ẑ
∂Ex

∂z
,

so

(1.55)−µ
∂H
∂t

= (ẑ × E0)
∂Ex

∂z
.

Because of the Ex(z ± vφt) dependence on z, t, we must have

(1.56)
∂Ex

∂z
= ±

1
vφ

∂Ex

∂t
,

or

(1.57)
−µ

∂H
∂t

= (ẑ × E0)

= ±
1
vφ

∂Ex

∂t
.

Integrating with respect to t and assuming a zero integration constant (physical justification
for that?), we have

(1.58)H = ∓Ex(z, t)
ẑ × E0

vφµ
.

The vφµ product is the intrinsic wave impedance of the medium

(1.59)

vφµ =
µ
√
εµ

=

√
µ

ε
= η.

The magnetic field can be written in terms of the propagation direction n̂ = ∓ẑ has

H = ∓
ẑ ×E
η

=
n̂ ×E
η

. (1.60)

Note that in free space we have η ≈ 377Ω.
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summary For 1D wave propagation along the z axis we have

∇
2E = εµ

∂2E
∂t2

∇
2H = εµ

∂2H
∂t2

(1.61)

where

E = E0 f (z ∓ vφt)

0 = E0 · ẑ

H = ±
ẑ ×E0

η
f (z ∓ vφt)

(1.62)

Note that ±ẑ is the direction of propagation, with +z being the forward wave, and −z the
backwards wave.

The phase velocity is

vφ =
1
√
µε
, (1.63)

and the intrinsic wave impedance is

η =

√
µ

ε
. (1.64)

Notes:

• E,H are perpendicular to the direction of propagation ẑ. These are transverse waves.

• |E|/|H| = η. An analogy with transmission lines is

V ↔ E

I ↔ H

Z0 ↔ η

(1.65)

• E,H are orthogonal to each other as sketched in fig. 1.3.
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Figure 1.3: Transverse electric and magnetic propagation.

1.5 time harmonic fields

Assume that the fields vary sinusoidally and use phasor notation

E = Re
(
E(r)e jωt

)
, (1.66)

where E(r) is a (complex) vector-valued phasor. Notes:

(i) Physicists use a e− jωt notation for the time dependence.

(ii) Sometimes RMS values are used instead of peak values, so that

E =
√

2 Re
(
E(r)e jωt

)
, (1.67)

and E(r) is an RMS phasor.

(iii) The time derivative ∂/∂t → jω in Maxwell’s equations.

(iv) The e jωt variation is dropped for convenience.

The e jωt time harmonic dependence is not restrictive because one can synthesize any function
of t using a Fourier transform

F ( f (t)) = f̃ (ω) =

∫ ∞

−∞

f (t)e− jωtdt, (1.68)

where f̃ (ω) is the spectrum. If the spectrum is known then the inverse Fourier transform is

f (t) =
1

2π

∫ ∞

−∞

f̃ (ω)e jωtdt, (1.69)



1.5 time harmonic fields 17

If the response to a time harmonic signal e jωt is known then the response to an arbitrary
waveform f (t) can be synthesized, as shown in fig. 1.4 where the waveform input is f (t) =
1

2π

∫ ∞
−∞

f̃ (ω)e jωtdt and the waveform output is 1
2π

∫ ∞
−∞

f̃ (ω)G(ω)e jωtdt

Figure 1.4: System frequency response.

If the fields are known in phasor form E(r, ω) then the response to an arbitrary signal with
spectrum f̃ (ω) is

E(r, t) =
1

2π

∫ ∞

−∞

E(r, ω) f̃ (ω)e jωtdt. (1.70)

FIXME: unsure what f̃ (ω) is here? Isn’t E(r, ω) the spectrum of the field? Is this supposed
to be the field response to the system G(ω) ?

Maxwell’s equations in phasor form Faraday’s law, the Ampere-Maxwell law, the continuity
equation, and the (linear, homogeneous, isotropic) constitutive relations respectively are

∇ ×E = − jωB (1.71a)

∇ ×H = J + jωD (1.71b)

∇ · J = − jωρ (1.71c)

B = µH
D = εE

(1.71d)
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Note that D(r, ω) = ε(ω)E(r, ω) becomes a convolution in the time domain

D(r, t) =

∫
E(r, t − τ)ε(τ)dτ. (1.72)

This describes the delay between the E field and the D field, the polarization.

1D propagation, and sinusoidal waves In a source free, loss less ( σ = 0 ) simple medium
the electric field satisfies

∇
2E − εµ

∂2E
∂t2 = 0 (1.73)

In a phasor form the field is

E(r, t) = Re
(
E(r)e jωt

)
, (1.74)

so the wave equation becomes

∇
2E − εµ( jω)2E = 0, (1.75)

or

∇
2E + β2E = 0. (1.76)

where the propagation constant, or wave number is

β = ω
√
εµ =

ω

vφ
=

2π
λ
, (1.77)

where ω = 2π f is the angular frequency and T = 1/ f is the period. For 1D propagation along
the z-axis the fields are

Ex(z, t) = E+
0 cos(ωt − βz)

Hx(z, t) =
E+

0

η
cos(ωt − βz).

(1.78)

These correspond to phasors

Ex(z) = E+
0 e− jkz

Hx(z) =
E+

0

η
e− jkz.

(1.79)

The peak velocity of either the electric or magnetic fields travels with the phase velocity as
sketched in fig. 1.5.
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Figure 1.5: Phase velocity propagation.

Plane waves Consider

Ex(z, t) = E+
0 cos(ωt − βz), (1.80)

which had the phasor form Ex = E+
0 e− jβz. The phase of the wave is given by

Φ = ωt − βz. (1.81)

At a fixed time t, the locus of the points with the same phase is given by the equation

βz = ωt −Φ = constant. (1.82)

βz = constant describes planes perpendicular to the z axis, as sketched in fig. 1.6.
Notes

• Since the equiphase surfaces are planes, we deal with plane waves.

• β(z + λ) = βz + 2π. i.e. wavefronts are separated in space by one wavelength λ.

• velocity of wavefront βdz = ωdt means that phase velocity is

dz
dt

=
ω

β
=

1
√
µε
, (1.83)
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Figure 1.6: Equiphase surfaces.

or

(1.84)vφ =
ω

β
.

Since βz −ωt = β(z − vφt) = constant we also have

(1.85)
dz
dt
− vφ = 0,

or

(1.86)vφ =
λ

T
.

These can be combined to give

(1.87)

β =
ω

vφ

=
ωT
λ

=
2π f T
λ

=
2π
λ
.

1.6 poynting theorem

Poynting vector Consider a volume V, surrounded by a closed surface S as sketched in fig. 1.7.
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Figure 1.7: Poynting volume.

The instantaneous power density outflowing the surfaces S s given by the Poynting vector

P = E ×H, (W/m2), (1.88)

where E and H are time-dependent fields. For time harmonic fields

E = Re
(
Ee jωt

)
H = Re

(
He jωt

) (1.89)

Hence

(1.90)

P = E ×H

=
1
4

(
Ee jωt + E∗e− jωt

)
×

(
He jωt + H∗e− jωt

)
=

1
4

(
(E ×H)e2 jωt + (E∗ ×H) + (E ×H∗)(E∗ ×H∗)e−2 jωt

)
.

Therefore the time-average Poynting vector is

S =
1
T

∫ T

0
Pdt =

1
2

Re (E ×H∗) (W/m2). (1.91)

The total time-average power outflowing S is

P =
1
2

∮
Re (E ×H∗) · dS. (1.92)
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Figure 1.8: Poynting volume with sources.

Poynting theorem Consider again a volume V enclosed in a surface S. Assume that electric
currents may exist in V and that V is filled with a material characterized by ε, µ and a conduc-
tivity σ, where ε = ε′ − jε′′, and µ = µ′ − jµ′′ as illustrate in fig. 1.8.

From Faraday’s law ∇ ×E = − jωµH, and Ampere’s law ∇ ×H = J + jωεE, we have

H∗ · (∇ ×E) = − jωµ|H|2

E · (∇ ×H∗) = J∗ ·E − jωε∗|E|2
(1.93)

We assume that the current is a sum of sources and induced currents J = Js + Jind, where
Jind = σE. Recall that

∇ · (E ×H∗) = H∗ · (∇ ×E) −E∗ · (∇ ×H∗) . (1.94)

Hence

∇ · (E ×H∗) = − jωµ|H|2 − J∗s ·E −σ|E|
2 + jωε∗|E|2. (1.95)

Now integrate over V, using the divergence theorem

(1.96)

∫
V
∇ ·

(
E ×H∗

)
dV =

∮ (
E ×H∗

)
· dS

= −σ

∫
V
|E|2dV + jω

∫
V

(
ε∗|E|2 − µ|H|2

)
dV −

∫
V

J∗s · EdV,
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or

(1.97)

−
1
2

∫
V

J∗s · EdV,= +
1
2

∮ (
E ×H∗

)
· dS +

σ

2

∫
V
|E|2dV − j

ω

2

∫
V

(
ε∗|E|2 − µ|H|2

)
dV

= +
1
2

∮ (
E ×H∗

)
· dS +

σ

2

∫
V
|E|2dV +

ω

2

∫
V

(
ε′′|E|2

+ µ′′|H|2
)

dV + j
ω

2

∫
V

(
−ε′|E|2 + µ′|H|2

)
dV

This is the mathematical manifestation of Poynting’s theorem which is nothing else but the
conservation of power with volume V. We can now identify the following terms:

• Power generated by current sources

Ps = −
1
2

∫
V

J∗s ·EdV (1.98)

• Complex power flowing out of V

Po =
1
2

∮
(E ×H∗) · dS (1.99)

• Power loss due to materials

Pm =
ω

2

∫
V

(
ε′′|E|2 + µ′′|H|2

)
dV (1.100)

• Ohmic losses

Pc =
σ

2

∫
V
|E|2dV (1.101)

• Time average stored electric energy

We =
1
4
ε′

∫
V
|E|2dV (1.102)

• Time average stored magnetic energy

We =
1
4
µ′

∫
V
|H|2dV (1.103)
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The Poynting theorem is a complex power balance of the form

Ps = Po + Pm + Pc + 2 jω (Wm −We) (1.104)

The real part of the above equation is related to the time average power. i.e.

Re(Ps) = Re(Po) + Pm + Pc. (1.105)

On the other hand the imaginary part is related to the net stored energy with V. i.e.

Im(Ps) = 2ω (Wm −We) + Im(Po). (1.106)

We can now use Poynting theorem to calculate losses in waveguides.

1.7 lossy media

In a lossy medium characterized by γ = α + jβ such that the wave behaves like e−γz for propa-
gation along +z, or

e−γz = e−αze− jβz (1.107)

The e−αz term introduces an exponential attenuation with z. The wave equation in the phasor
domain is then

∇
2E − γ2E = 0, (1.108)

where

γ2 = −ω2µεeff . (1.109)

The effective complex permittivity εeff = ε′ − jε′′ is obtained from Ampere’s law

(1.110)

∇ ×H = J + jωεE
= σE + jωεE
= (σ + jωε) E

= jω
(
ε − j

σ

ω

)
E,
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so

εeff = ε′ − jε′′

ε′ = ε

ε′′ =
σ

ω

(1.111)

Since γ = jω
√
µεeff and γ2 = −ω2µεeff we see that

(1.112)
(α + jβ)2 = (α2 − β2) + j2αβ

= −ω2µεeff

= −ω2µε′ + jω2µε′′,

therefore

α2 − β2 = −ω2µε′

2αβ = ω2µε′′.
(1.113)

Solving for α and β yields

α = ω

√√√√√
µε′

2


√

1 +

(
ε′′

ε′

)2
− 1

, Np/m

β = ω

√√√√√
µε′

2


√

1 +

(
ε′′

ε′

)2
+ 1

, rad/m

(1.114)

Assuming propagation along +ẑ

(1.115)
E(z) = x̂Ex(z)

= x̂Ex0e−γz

= x̂Ex0e−αze− jβz

The magnetic field can be determined from

(1.116)∇ × E = − jωµH,

or

(1.117)
H = ŷ

Ex

ηc

= ŷ
Ex0

ηc
e−αze− jβz,
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where

(1.118)
ηc =

√
µ

εeff

=

√
µ

ε′

(
1 − j

ε′′

ε′

)−1/2

Ω,

is the complex intrinsic impedance of the medium. Note that since ηc is complex the electric
and magnetic fields are no longer in phase.

1.8 skin depth

Note that

|Ex| = |Ex0|e−αz∣∣∣Hy
∣∣∣ = |Hx0|e−αz.

(1.119)

The skin depth δs is defined as the distance that the wave needs to travel to reduce its magni-
tude by 1/e. Hence

e−αδs = e−1, (1.120)

or

δs =
1
α
. (1.121)

This is sketched in fig. 1.9.

Low loss dielectrics A low loss dielectric medium is characterized by ε′′ � ε′, so ε ≈ ε′.
This gives

(1.122)
γ = jω

√
µε′

(
1 − j

ε′′

ε′

)1/2

≈ jω
√
µε′

(
1 − j

ε′′

2ε′

)
.

Hence
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Figure 1.9: Skin depth.

(1.123)

α ≈ ω
√
µε′

ε′′

2ε′

=
σ

2

√
µ

ε′

≈
σ

2

√
µ

ε
.

(1.124)β ≈ ω
√
µε′

≈ ω
√
µε,

which is the same as in the lossless medium ε. Also in this case

(1.125)

ηc =

√
µ

ε′

(
1 − j

ε′′

ε′

)−1/2

≈

√
µ

ε′

(
1 + j

ε′′

2ε′

)
=

√
µ

ε′

(
1 + j

σ

2ωε′

)
≈

√
µ

ε′
,

(for σ � ωε, (a good dielectric), so

(1.126)ηc ≈

√
µ

ε
,

which is the same as if the medium is lossless.
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Good conductors In this case σ � ωε so that

(1.127)

γ = jω
√
εeffµ

= jω
√
εµ

(
1 − j

σ

ωε

)1/2

≈ jω
√
εµ

√
− j

σ

ωε

= jω
√
εµ

√
σ

ωε
e− jπ/4

= jω
√
µσ

2ω
(1 − j)

=

√
µσω

2
(1 + j)

= α + jβ,

Hence

α ≈ β ≈

√
ωµσ

2
=

√
π fµσ. (1.128)

Since ∇ ×E = −µ( jω)H, and with a E ∝ e−γz dependence, we have

(1.129)

ηc =
|E|
|H|

=
−µ( jω)
−γ

=
jωµ
γ

so

(1.130)

ηc =
jωµ
γ

=
jωµ√

µσω

2
(1 + j)

=
j(1 − j)ωµ

2
√
µσω

2

= ( j + 1)
√
ωµ

2σ

= ( j + 1)
α

σ
.
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The skin depth for a good conductor is

(1.131)

δs =
1
α

=

√
2

ωµσ

=
1√
π fµσ

.

Example 1.4: Copper skin depth.

Copper has a conductivity of σ = 5.8× 107S/m. What is the skin depth δs = 1/
√
π fµ0σ ?

• At 1 GHz, δs ≈ 2.1µm

• At 3 GHz, δs ≈ 1.2µm

• At 10 GHz, δs ≈ 0.6µm

We can conclude that a very thin metallic film can effectively shield RF energy.

1.9 skin effect

At DC the current through a wire flows uniformly throughout the entire cross section of a wire
as sketched in fig. 1.10.

Figure 1.10: DC current distribution in wire.

The current occupies the entire cross section πb2, so the DC resistance is



30 electromagnetic fields

(1.132)RDC =
1
σ

l
πb2 .

However, with RF (like microwave) signals the current only exists effectively within on skin
depth, as sketched in fig. 1.11.

Figure 1.11: RF current distribution in wire.

therefore the RF resistance is

(1.133)RRF =
1
σ

l
2πbδs

.

Since ARF � A = πb2,

(1.134)RRF � RDC.

Wires become very lossy at microwave frequencies.

Example 1.5: Skin effect for copper.

Consider a copper wire with σ = 5.8× 107S/m of radius b = 0.5mm and length 10m. Find
the DC and RF resistance at 1, 3 and 10GHz. The DC resistance is

(1.135)

RDC =
1
σ

l
πb2

=
10

5.8 × 107 × π(0.0005)2

= 0.22Ω.

On the other hand

(1.136)RRF =
1
σ

l
2πbδs

.

So, at
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• 1GHz, RRF = 26Ω

• 3GHz, RRF = 45.7Ω

• 10GHz, RRF = 91.5Ω

Compare these values with RDC = 0.22Ω.

Exercise 1.1 Solve for the α, β constants.

Prove eq. (1.114).

1.10 problems

Answer for Exercise 1.1
Eliminating α, and letting a = ω2µ, we have

(1.137)
(
aε′′

2β

)2

− β2 = −aε′,

or

(1.138)
a2(ε′′)2

4
− β4 = −aε′β2

or

(1.139)
a2(ε′′)2

4
= β4 − aε′β2

or

(1.140)

(
β2 −

aε′

2

)2

=
a2(ε′′)2

4
+

a2(ε′)2

4

=
a2

4

(
(ε′′)2 + (ε′)2

)
This gives

(1.141)

β2 =
aε′

2
+

a
2

√
(ε′′)2 + (ε′)2

=
aε′

2

1 +

√
1 +

(ε′′)2

(ε′)2

 ,
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or

(1.142)β = ω2µ

√√√√
aε′

2

1 +

√
1 +

(ε′′)2

(ε′)2

,
as stated. Solving for α can be done by inspection from eq. (1.141) and eq. (1.137).
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T R A N S M I S S I O N L I N E S

2.1 requirements

A transmission line requires two conductors as sketched in fig. 2.1, which shows a 2-wire line
such a telephone line, a coaxial cable as found in cable TV distribution, and a microstrip line as
found in cell phone RF interconnects.

Figure 2.1: Transmission line examples.

A two-wire line becomes a transmission line when the wavelength of operation becomes
comparable to the size of the line (or higher spectral component for pulses). In general a trans-
mission line much support (TEM) transverse electromagnetic modes.

2.2 time harmonic solutions on transmission lines

In fig. 2.2, an electronic representation of a transmission line circuit is sketched.
In this circuit all the elements have per-unit length units. With I = CdV/dt ∼ jωCV , v = IR,

and V = LdI/dt ∼ jωLI, the KVL equation is

(2.1)V(z) − V(z + ∆z) = I(z)∆z (R + jωL) ,

or in the ∆z→ 0 limit

(2.2)
∂V
∂z

= −I(z) (R + jωL) .

The KCL equation at the interior node is

(2.3)−I(z) + I(z + ∆z) + ( jωC + G) V(z + ∆z) = 0,

33
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Figure 2.2: Transmission line equivalent circuit.

or

(2.4)
∂I
∂z

= −V(z) ( jωC + G) .

This pair of equations is known as the telegrapher’s equations

∂V
∂z

= −I(z) (R + jωL)

∂I
∂z

= −V(z) ( jωC + G) .
(2.5)

The second derivatives are

∂2V
∂z2 = −

∂I
∂z

(R + jωL)

∂2I
∂z2 = −

∂V
∂z

( jωC + G) ,

(2.6)

which allow the V, I to be decoupled

∂2V
∂z2 = V(z) ( jωC + G) (R + jωL)

∂2I
∂z2 = I(z) (R + jωL) ( jωC + G) ,

(2.7)

With a complex propagation constant

(2.8)

γ = α + jβ

=

√
( jωC + G) (R + jωL)

=

√
RG − ω2LC + jω(LG + RC),
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the decouple equations have the structure of a wave equation for a lossy line in the frequency
domain

∂2V
∂z2 − γ

2V = 0

∂2I
∂z2 − γ

2I = 0.
(2.9)

We write the solutions to these equations as

V(z) = V+
0 e−γz + V−0 e+γz

I(z) = I+
0 e−γz − I−0 e+γz (2.10)

Only one of V or I is required since they are dependent through eq. (2.5), as can be seen by
taking derivatives

(2.11)
∂V
∂z

= γ
(
−V+

0 e−γz + V−0 e+γz
)

= −I(z) (R + jωL) ,

so

I(z) =
γ

R + jωL
(V+

0 e−γz − V−0 e+γz) . (2.12)

Introducing the characteristic impedance Z0 of the line

(2.13)

Z0 =
R + jωL

γ

=

√
R + jωL
G + jωC

,

we have

(2.14)I(z) =
1
Z0

(
V+

0 e−γz − V−0 e+γz
)

= I+
0 e−γz − I−0 e+γz,

where

I+
0 =

V+
0

Z0

I−0 =
V−0
Z0
.

(2.15)
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2.3 mapping tl geometry to per unit length C and L elements

Example 2.1: Coaxial cable.

From electrostatics and magnetostatics the per unit length induction and capacitance con-
stants for a co-axial cable can be calculated. For the cylindrical configuration sketched in
fig. 2.3

Figure 2.3: Coaxial cable.

From Gauss’ law the total charge can be calculated assuming that the ends of the cable
can be neglected

(2.16)

Q =

∫
∇ · DdV

=

∮
D · dA

= ε0εrE(2πr)l,

This provides the radial electric field magnitude, in terms of the total charge

E =
Q/l

ε0εr(2πr)
, (2.17)

which must be a radial field as sketched in fig. 2.4.
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Figure 2.4: Radial electric field for coaxial cable.

The potential difference from the inner transmission surface to the outer is

(2.18)

V =

∫ b

a
Edr

=
Q/l

2πε0εr

∫ b

a

dr
r

=
Q/l

2πε0εr
ln

b
a
.

Therefore the capacitance per unit length is

C =
Q/l
V

=
2πε0εr

ln b
a

. (2.19)

The inductance per unit length can be calculated form Ampere’s law

(2.20)

∫
(∇ ×H) · dS =

∫
J · dS +

∂

∂t

∫
���D · dl

= I

=

∮
H · dl

= H(2πr)

=
B
µ0

(2πr)

The flux is
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(2.21)

Φ =

∫
B · dA

=
µ0I
2π

∫
A

1
r

ddr

=
µ0I
2π

∫ b

a

1
r

lddr

=
µ0Il
2π

ln
b
a
.

The inductance per unit length is

L =
Φ/l

I
=
µ0

2π
ln

b
a
. (2.22)

For a lossless line where R = G = 0, we have γ =
√

( jωL)( jωC) = jω
√

LC, so the
phase velocity for a (lossless) coaxial cable is

(2.23)

vφ =
ω

β

=
ω

Im(γ)

=
ω

ω
√

LC)

=
1
√

LC)
.

This gives

(2.24)

v2
φ =

1
L

1
C

=
2π

µ0 ln b
a

ln b
a

2πε0εr

=
1

µ0ε0εr

=
1
µ0ε

.

So



2.4 lossless line . 39

(2.25)vφ =
1
√
εµ0

,

which is the speed of light in the medium (εr) that fills the co-axial cable.
This is not a coincidence. In any two-wire homogeneously filled transmission line, the

phase velocity is equal to the speed of light in the unbounded medium that fills the line.
The characteristic impedance (again assuming the lossless R = G = 0 case) is

(2.26)

Z0 =

√
�R + jωL

�G + jωC

=

√
L
C

=

√
µ0

2π
ln

b
a

ln b
a

2πε0εr

=

√
µ0

ε

ln b
a

2π
.

Note that η =
√
µ0/ε0 = 120πΩ is the intrinsic impedance of free space. The values a, b

in eq. (2.26) can be used to tune the characteristic impedance of the transmission line.

2.4 lossless line .

The lossless lossless case where R = G = 0 was considered above. The results were

(2.27)γ = jω
√

LC,

so α = 0 and β = ω
√

LC, and the phase velocity was

(2.28)vφ =
1
√

LC
,

the characteristic impedance is

(2.29)Z0 =

√
L
C
,

and the signals are

V(z) = V+
0 e− jβz + V−0 e jβz

I(z) =
1
Z0

(
V+

0 e− jβz − V−0 e jβz
) (2.30)
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In the time domain for an infinite line, we have

(2.31)
v(z, t) = Re

(
V(z)e jωt

)
= V+

0 Re
(
e− jβze jωt

)
= V+

0 cos(ωt − βz).

In this case the shape and amplitude of the waveform are preserved as sketched in fig. 2.5.

Figure 2.5: Lossless line signal preservation.

2.5 low loss line .

Assume R � ωL and G � ωC. In this case we have

(2.32)

γ =
√

(R + jωL)(G + jωC)

= jω
√

LC

√(
1 +

R
jωL

) (
1 +

G
jωC

)
≈ jω

√
LC

(
1 +

R
2 jωL

) (
1 +

G
2 jωC

)
≈ jω

√
LC

(
1 +

R
2 jωL

+
G

2 jωC

)
= jω

√
LC + jω

R
√

C/L
2 jω

+ jω
G

√
L/C

2 jω

= jω
√

LC +
1
2

R √
C
L

+ G

√
L
C

 ,
so

α =
1
2

R √
C
L

+ G

√
L
C


β = ω

√
LC.

(2.33)
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Observe that this value for β is the same as the lossless case to first order. We also have

(2.34)
Z0 =

√
R + jωL
G + jωC

≈

√
L
C
,

also the same as the lossless case. We must also have vφ = 1/
√

LC. To consider a time
domain signal note that

(2.35)V(z) = V+
0 e−γz

= V+
0 e−αze− jβz,

so

(2.36)
v(z, t) = Re

(
V(z)e jωt

)
= Re

(
V+

0 e−αze− jβze jωt
)

= V+
0 e−αz cos(ωt − βz).

The phase factor can be written

(2.37)ωt − βz = ω
(
t −

β

ω
z
)
ω

(
t − z/vφ

)
,

so the signal still moves with the phase velocity vφ = 1/
√

LC, but in a diminishing envelope
as sketched in fig. 2.6.

Figure 2.6: Time domain envelope for loss loss line.

Notes

• The shape is preserved but the amplitude has an exponential attenuation along the line.
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• In this case, since β(ω) is a linear function to first order, we have no dispersion. All of
the Fourier components of a pulse travel with the same phase velocity since vφ = ω/β is
constant. i.e. v(z, t) = e−αz f (t − z/vφ). We should expect dispersion when the R/ωL and
G/ωC start becoming more significant.

2.6 distortionless line .

Motivated by the early telegraphy days, when low loss materials were not available. Therefore
lines with a constant attenuation and constant phase velocity (i.e. no dispersion) were required
in order to eliminate distortion of the signals. This can be achieved by setting

R
L

=
G
C
. (2.38)

When that is done we have

(2.39)

γ =
√

(R + jωL)(G + jωC)

= jω
√

LC

√(
1 +

R
jωL

) (
1 +

G
jωC

)

= jω
√

LC

√(
1 +

R
jωL

) (
1 +

R
jωL

)
= jω

√
LC

(
1 +

R
jωL

)
= R

√
C
L

+ jω
√

LC

=
√

RG + jω
√

LC.

We have

α =
√

RG

β = ω
√

LC.
(2.40)

The phase velocity is the same as that of the lossless and low-loss lines

vφ =
ω

β
=

1
√

LC
. (2.41)
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2.7 terminated lossless line .

Consider the load configuration sketched in fig. 2.7.

Figure 2.7: Terminated line.

Recall that

V(z) = V+
0 e− jβz + V−0 e+ jβz

I(z) =
V+

0

Z0
e− jβz −

V−0
Z0

e+ jβz
(2.42)

At the load (z = 0), we have

V(0) = V+
0 + V−0

I(0) =
1
Z0

(V+
0 − V−0 )

(2.43)

So

(2.44)

ZL =
V(0)
I(0)

= Z0
V+

0 + V−0
V+

0 − V−0

= Z0
1 + ΓL

1 − ΓL
,

where

ΓL ≡
V−0
V+

0
, (2.45)
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is the reflection coefficient at the load.
The phasors for the signals take the form

V(z) = V+
0

(
e− jβz + ΓLe+ jβz

)
I(z) =

V+
0

Z0

(
e− jβz − ΓLe+ jβz

)
.

(2.46)

Observe that we can rearranging for ΓL in terms of the impedances

(2.47)(1 − ΓL) ZL = Z0
1 + ΓL

,

or
(2.48)ΓL (Z0 + ZL) = ZL − Z0,

or

(2.49)ΓL =
ZL − Z0

Z0 + ZL
.

Power The average (time) power on the line is

(2.50)

Pav =
1
2

Re
(
V(Z)I∗(z)

)
=

1
2

Re
(
V+

0

(
e− jβz + ΓLe+ jβz

) (V+
0

Z0

)∗ (
e jβz − Γ∗Le− jβz

))
=

∣∣∣V+
0

∣∣∣2
2Z0

Re
(
1 + ΓLe2 jβz − Γ∗Le−2 jβz − |ΓL|

2
)

=

∣∣∣V+
0

∣∣∣2
2Z0

(
1 − |ΓL|

2
)
.

where we’ve made use of the fact that Z0 =
√

L/C is real for the lossless line, and the fact
that a conjugate difference A − A∗ = 2 j Im(A) is purely imaginary.

This can be written as

(2.51)Pav = P+ − P−,

where

P+ =

∣∣∣V+
0

∣∣∣2
2Z0

P+ =

∣∣∣V+
0

∣∣∣2
2Z0
|ΓL|

2.

(2.52)
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This difference is the power delivered to the load. This is not z-dependent because we are
considering the lossless case. Maximum power is delivered to the load when ΓL = 0, which
occurs when the impedances are matched.

2.8 return loss and insertion loss . defined .

Return loss (dB) is defined as

(2.53)

RL = 10 log10
Pinc

Prefl

= 10 log10
1

|Γ|2

= −20 log10 |Γ|.

Insertion loss (dB) is defined as

(2.54)

IL = 10 log10
Pinc

Ptrans

= 10 log10
P+

P+ − P−

= 10 log10
1

1 − |Γ|2

= −10 log10

(
1 − |Γ|2

)
.

2.9 standing wave ratio

Consider again the lossless loaded configuration of fig. 2.7. Now let z = −l, where l is the
distance from the load. The phasors at this point on the line are

V(−l) = V+
0

(
e jβl + ΓLe− jβl

)
I(−l) =

V+
0

Z0

(
e jβl − ΓLe− jβl

) (2.55)

The absolute voltage at this point is

(2.56)
|V(−l)| =

∣∣∣V+
0

∣∣∣∣∣∣e jβl + ΓLe− jβl
∣∣∣

=
∣∣∣V+

0

∣∣∣∣∣∣1 + ΓLe−2 jβl
∣∣∣

=
∣∣∣V+

0

∣∣∣∣∣∣1 + |ΓL|e jΘLe−2 jβl
∣∣∣,
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where the complex valued ΓL is given by ΓL = |ΓL|e jΘL .
This gives

|V(−l)| =
∣∣∣V+

0

∣∣∣∣∣∣1 + |ΓL|e j(ΘL−2βl)
∣∣∣. (2.57)

The voltage magnitude oscillates as one moves along the line. The maximum occurs when
e j(ΘL−2βl) = 1

Vmax =
∣∣∣V+

0

∣∣∣|1 + |ΓL||. (2.58)

This occurs when ΘL − 2βl = 2kπ for k = 0, 1, 2, · · ·. The minimum occurs when e j(ΘL−2βl) =

−1

Vmin =
∣∣∣V+

0

∣∣∣|1 − |ΓL||, (2.59)

which occurs when ΘL − 2βl = (2k − 1)π for k = 1, 2, · · ·. The standing wave ratio is defined
as

SWR =
Vmax

Vmin
=

1 + |ΓL|

1 − |ΓL|
. (2.60)

This is a measure of the mismatch of a line. This is sketched in fig. 2.8.

Figure 2.8: SWR extremes.

Notes:

• Since 0 ≤ |ΓL| ≤ 1, we have 1 ≤ SWR ≤ ∞. The lower bound is for a matched line, and
open, short, or purely reactive termination leads to the infinities.
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• The distance between two successive maxima (or minima) can be determined by setting
ΘL − 2βl = 2kπ for two consecutive values of k. For k = 0, suppose that Vmax occurs at
d1

(2.61)ΘL − 2βd1 = 2(0)π,

or

(2.62)d1 =
ΘL

2β
.

For k = 1, let the max occur at d2

(2.63)ΘL − 2βd2 = 2(1)π,

or

(2.64)d2 =
ΘL − 2π

2β
.

The difference is

(2.65)

d1 − d2 =
ΘL

2β
−

ΘL − 2π
2β

=
π

β

=
π

2π/λ

=
λ

2
.

The distance between two consecutive maxima (or minima) of the SWR is λ/2.

2.10 impedance transformation .

Referring to fig. 2.9, let’s solve for the impedance at the load where z = 0 and at z = −l.
At any point on the line we have

(2.66)V(z) = V+
0 e− jβz

(
1 + ΓLe2 jβz

)
,
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Figure 2.9: Configuration for impedance transformation.

so at the load and input we have

VL = V+
0 (1 + ΓL)

V(−l) = V+ (1 + ΓL(−1)) ,
(2.67)

where

V+ = V+
0 e jβl

ΓL(−1) = ΓLe−2 jβl (2.68)

Similarly

I(−l) =
V+

Z0
(1 − ΓL(−1)) . (2.69)

Define an input impedance as

(2.70)
Zin =

V(−l)
I(−l)

= Z0
1 + ΓL(−1)
1 − ΓL(−1)

This is analogous to

(2.71)ZL = Z0
1 + ΓL

1 − ΓL

From eq. (2.49), we have
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(2.72)

Zin = Z0
Z0 + ZL + (ZL − Z0) e−2 jβl

Z0 + ZL − (ZL − Z0) e−2 jβl

= Z0
(Z0 + ZL) e jβl + (ZL − Z0) e− jβl

(Z0 + ZL) e jβl − (ZL − Z0) e− jβl

= Z0
ZL cos(βl) + jZ0 sin(βl)
Z0 cos(βl) + jZL sin(βl)

,

or

Zin =
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

. (2.73)

This can be thought of as providing a reflection coefficient function along the line to the load
at any point as sketched in fig. 2.10.

Figure 2.10: Impedance transformation reflection on the line.

2.11 short circuited line

A short circuited line, also called a shorted stub, is sketched in fig. 2.11.
With

ZL = 0, (2.74)

the input impedance is

Zin = Z0
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

= jZ0 tan(βl) (2.75)

For short line sections βl � π/2, or l � λ/4, the input impedance is approximately
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Figure 2.11: Short circuited line.

(2.76)
Zin = jZ0 tan(βl)
≈ jZ0 sin(βl)
≈ jZ0βl

Introducing an equivalent inductance defined by Zin = jωLeq, we have

(2.77)

Leq =
Z0

ω
βl

=
Z0

ω

ω

vφ
l

=
Z0l
vφ
.

The inductance per unit length of the line is C = Z0/vφ. An application for this result is that
instead of using inductors, shorted stubs can be used in high frequency applications.

This is also the case for short sections of high impedance line.

2.12 open circuited line

An open circuited line is sketched in fig. 2.12.
This time with ZL → ∞ we have

(2.78)Zin = Z0
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

= − jZ0 cot(βl).

This time we have an equivalent capacitance. For short sections with βl � π/2

(2.79)Zin ≈ − j
Z0

βl
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Figure 2.12: Open circuited line.

Introducing an equivalent capacitance defined by Zin = 1/( jωCeq), we have

(2.80)

Ceq =
βl
ωZ0

=
ω/vφl
ωZ0

=
l

vφZ0

The capacitance per unit length of the line is C = 1/(Z0vφ).
This is also the case for short sections of low impedance line.

2.13 half wavelength transformer .

A half wavelength transmission line equivalent circuit is sketched in fig. 2.13.

Figure 2.13: Half wavelength transmission line.

With l = λ/2
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(2.81)βl =
2π
λ

λ

2
= π.

Since tan π = 0, the input impedance is

(2.82)Zin = Z0
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

= ZL.

2.14 quarter wavelength transformer .

A quarter wavelength transmission line equivalent circuit is sketched in fig. 2.14.

Figure 2.14: Quarter wavelength transmission line.

With l = λ/4

(2.83)
βl =

2π
λ

λ

4
=
π

2
.

We have tan βl→ ∞, so the input impedance is

(2.84)
Zin = Z0

ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

=
Z2

0

ZL
.

This relation
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Zin =
Z2

0

ZL
, (2.85)

is called the impedance inverter.

• A large impedance is transformed into a small one and vice-versa.

• A short becomes an open and vice-versa.

• A capacitive load becomes inductive and vice-versa.

• If ZL is a series resonant circuit then Zin becomes parallel resonant.

See [3] for an explanation of the term series resonant.

Matching with a λ/4 transformer. Matching for a quarter wavelength transmission line equiv-
alent circuit is sketched in fig. 2.15.

Figure 2.15: Quarter wavelength transmission line matching.

For maximum power transfer

Zin =
Z2

0

RL
= RG, (2.86)

so

Z0 =
√

RGRL. (2.87)

We have

|ΓL| =
RL − Z0

RL + Z0
, 0, (2.88)

and still maximum power is transferred.
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2.15 smith chart

A Smith chart is a graphical tool for making the transformation Γ ↔ Zin. Given

Zin = Z0
1 + Γ
1 − Γ

, (2.89)

where Γ = ΓLe−2 jβl, we begin by normalizing the input impedance, using an overbar to
denote that normalization

Zin → Zin =
Zin

Z0
, (2.90)

so

(2.91)

Zin =
1 + Γ
1 − Γ

=
(1 + Γr) + jΓi

(1 − Γr) − jΓi

=
((1 + Γr) + jΓi) ((1 − Γr) + jΓi)

(1 − Γr)2 + Γ2
i

=
(1 − Γ2

r − Γ2
i ) + jΓi(1 − Γr + 1 + Γr)

(1 − Γr)2 + Γ2
i

=
(1 − |Γ|2) + 2 jΓi

(1 − Γr)2 + Γ2
i

.

If we let Zin = ΓL + jXL, and equate real and imaginary parts we have

ΓL =
1 − |Γ|2

(1 − Γr)2 + Γ2
i

XL =
2Γi

(1 − Γr)2 + Γ2
i

(2.92)

It is left as an exercise to demonstrate that these can be rearranged into

Γr −
ΓL

1 + ΓL

2

+ Γ2
i =

(
1

1 + ΓL

)2

(Γr − 1)2
+

(
Γi −

1

XL

)2

=
1

X2
L

,

(2.93)

which trace out circles in the Γr, Γi plane, one for the real part of Γ and one for the imaginary
part. This provides a graphical way for implementing the impedance transformation.
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Real impedance circle The circle for the real part is centered at

(2.94)
 ΓL

1 + ΓL
, 0

 ,
with radius

(2.95)
1

1 + ΓL
.

All these circles pass through the point (1, 0), since

(2.96)
ΓL

1 + ΓL
+

1

1 + ΓL
=

1 + ΓL

1 + ΓL
= 1.

For reactive loads where ΓL = 0, we have Γ2
r + Γ2

i = 1, a circle through the origin with unit
radius.

For matched loads where ΓL = 1 the circle is centered at (1/2, 0), with radius 1/2.

Imaginary impedance circle The circle obtained by equating imaginary parts are constant
reactance circles with center

(2.97)
(
1,

1

XL

)
,

with radius

(2.98)
1

XL
.

These circles also pass through the point (1, 0). These circles are orthogonal to the constant
resistance circles. Some of the features of a Smith chart are sketched in fig. 2.16.

A matlab produced blank Smith chart can be found in fig. 2.17.

Example 2.2: Perform a transformation along a lossless line.
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Figure 2.16: Hand sketched Smith chart.
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Figure 2.17: Blank Smith chart.
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Figure 2.18: Impedance transformation along lossless line.
Given

(2.99)Z =
1 + Γ
1 − Γ

,

(2.100)Γ = ΓLe−2 jβl,

and

(2.101)ΓL = |ΓL|e jΘL

The total reflection coefficient is

(2.102)Γ = |ΓL|e j(ΘL−2βl)

If ΓL = |ΓL|e jΘL is plotted on the Smith chart, then in order to move towards the gener-
ator, a subtraction from ΘL of 2βl is required.

Some worked examples that demonstrate this can be found in fig. 2.19, fig. 2.20, and
fig. 2.21.
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Figure 2.19: Mapping an impedance value onto a Smith chart.

Figure 2.20: Moving on the Smith chart towards the generator.
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`
0.38+0.5j

Figure 2.21: Moving on the Smith chart.

Single stub tuning. Referring to fig. 2.22, the procedure for single stub tuning is

1. Plot the load on the Smith Chart.

2. Trace the constant VSWR circle. (blue).

3. Move toward the generator until the constant resistance=1 circle is reached (red). This
determines the distance d.

4. Now the input impedance is of the form ZA = 1 + jX.

5. We now have to use the stub to cancel out the jX and make Zin = 1 (matched).

6. This can be done on the Smith Chart. If X > 0 then we need a capacitive stub (open). If
X < 0 then we need an inductive stub (shorted).

7. Say we need a capacitive stub (open): Start from the position of the open. Now the con-
stant VSWR circle is the exterior unit circle. Move toward the generator until you hit
negative X. This determines the length of the stub l.
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20+j25 
Ohm

Figure 2.22: Single stub tuning example
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Notes:

(a) In step (3) there are two points where the R=1 circle is intersected . Usually we chose the
shortest one

(b) By adding multiples of half-wavelength lengths to either d or l an infinite number of solu-
tions can be constructed.

2.16 problems

Exercise 2.1 Find the Smith chart circle equations

Prove eq. (2.93).
Answer for Exercise 2.1

We can write

(2.103)(1 − Γr)2 + Γ2
i =

2Γi

XL
,

or

(2.104)(1 − Γr)2 +

(
Γi −

1

XL

)2

=
1(

XL
)2 ,

which is one of the circular equations. For the other, putting the Γr, Γi terms in the numerator,
we have

(2.105)
1 − Γ2

r − Γ2
i

ΓL
= (1 − Γr)2 + Γ2

i

= 1 − 2Γr + Γ2
r + Γ2

i ,

or

(2.106)Γ2
r

(
1 +

1

ΓL

)
− 2Γr + Γ2

i

(
1 +

1

ΓL

)
=

1

ΓL
− 1.

Dividing through by 1 + 1/ΓL = (ΓL + 1)/ΓL, we have

(2.107)
Γ2

r − 2Γr
ΓL

ΓL + 1
+ Γ2

i =
1 − ΓL

ΓL

ΓL

ΓL + 1

=
1 − ΓL

ΓL + 1
,
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or

(2.108)

Γr −
ΓL

ΓL + 1

2

+ Γ2
i =

1 − ΓL

ΓL + 1
+

 ΓL

ΓL + 1

2

=
1 − Γ2

L + Γ2
L(

ΓL + 1
)2

=
1(

ΓL + 1
)2 .

Exercise 2.2 Transmission line basics.

A two-wire line has distributed parameters L′ = 6.5µH/m and C′ = 8.7pF/m.

a. What is the characteristic impedance (resistance) of the line?

b. What is the phase velocity this transmission line?

c. If a voltage wave with time waveform V−(t) is traveling along the line in the −z direc-
tion, and has an amplitude of 10V, write a time-domain expression for the current wave
associated with this voltage wave, using numerical parameters determined in part a and
part b.

Answer for Exercise 2.2

Part a. In this case we have

(2.109)γ =
√

( jωL′)( jωC′)

= jω
√

L′C′

and impedance
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(2.110)

Z0 =
��R′ + jωL′

γ

=
L′
√

L′C′

=

√
L′

C′

=

√
6.5µH/m
8.7pF/m

=

√
6.5 × 10−6H
8.7 × 10−12F

=

√
6.5
8.7

kΩ.

= 0.86kΩ.

Part b. The phase velocity is

(2.111)

vφ =
1
√

L′C′

=
1√

(6.5)(8.7)10−6−12(H/m)(F/m)

= 1.3 × 108m/s,

a factor of 23 less than the speed of light in vacuum.
A verification that

√
H/F is an Ohm, and that (1/

√
(H/m)(F/m) = m/s can be found in

transmissionLineUnits.nb.

Part c. The phasor voltage is

(2.112)V = 10 × eβz,

so the current phasor is

(2.113)I = −
10V

0.86kΩ
× eβz,

We have

(2.114)
β = ω

√
LC

=
ω

vφ
,
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so

(2.115)i(z, t) = −11.6 cos
(
ω(z/vφ + t)

)
mA,

where vφ is given by eq. (2.111).

Exercise 2.3 Low-loss transmission line with non-magnetic dielectric.

A transmission line is filled with a non-magnetic dielectric of εr = 2.5. The line has a capaci-
tance per unit length of C = 200 pF/m and a resistance per unit length of R = 2Ω/m. Calculate
the corresponding phase velocity, characteristic impedance and attenuation constant α (assume
G = 0).
Answer for Exercise 2.3

The impedance of the line is

(2.116)Z0 =

√
R + jωL
G + jωC

,

we know R,C,G, but not L. We’d found that

(2.117)vφ =
1
√

LC
,

for lossless, low-loss, and distortionless lines. If we assume that is the case here too, and

(2.118)

vφ =
c
√
εr

=
3 × 108
√

2.5
= 1.9 × 108 m/s,

we have

(2.119)

L =
1

v2
φC

=
1

(1.9 × 108)2(200 × 10−12)
H/m

= 14 nH/m.

For frequencies in the GHz range are the low-loss conditions satified? With G = 0, the
condition G � ωC is clearly true. How about R � ωL? For f in GHz we have
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(2.120)ωL = 2(14)π f
= 88 f .

We have 2 < 88 f , so the low-loss approximation is definitely valid for frequencies above 1
GHz.

Without such approximations, our impedance expression is a bit of an ugly beast

(2.121)
Z0 =

√
R + jωL
G + jωC

=

√
2 + jω14 × 10−9

jω200 × 10−12 Ω.

The low-loss approximation for the impedence, with R = 0, is

Z0 = 26.35. (2.122)

Compare this to the exact expansion of eq. (2.121) at frequencies starting at 1 GHz

Z0(1 GHz) = 26.35 −0.065 66◦

Z0(2 GHz) = 26.35 −0.032 83◦

Z0(3 GHz) = 26.35 −0.021 89◦

Z0(10 GHz) = 26.35 −0.006 566◦

(2.123)

At all of these frequencies, the impedance matches the low-loss approximation.
For the attenuation factor first note that

(2.124)
γ =

((
2 + jω1.4 × 10−9

) (
jω200 × 10−12

))1/2

= ((2 + j2π f 1.4) ( j0.4π f ))1/2

= f
√

0.4π ((2/ f ) j − 2.8π)1/2 ,

where f is in GHz. We see that for f ∈ [1, 10], this γ is close to purely imaginary, as is also
the case for R = 0. Specifically

γ(1 GHz)/ f = 33.12 89.93◦

γ(2 GHz)/ f = 33.12 89.97◦

γ(3 GHz)/ f = 33.12 89.98◦

γ(10 GHz)/ f = 33.12 89.99◦

(2.125)
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We want the real component of this. For the same frequencies, some specific values of the
real part, are

α(1 GHz) = 0.037947307

α(2 GHz) = 0.037947326

α(3 GHz) = 0.037947329

α(10 GHz) = 0.037947332.

(2.126)

How much attenuation is this, relative to the wavelength in question? Even for lower frequen-
cies, where the wavelength is larger, there is essentially zero attenuation over one wavelength.
For the same respective frequencies we have

e−λα = 0.9928

e−λα = 0.9964

e−λα = 0.9976

e−λα = 0.9993.

(2.127)

Let’s see how the low-loss line approximation fares for both the real (α) and imaginary (β)
components of γ? For all of these frequencies, we have

γ = 0.377 + 0.5305 jω. (2.128)

which compares exactly with the low-loss approximations using Z0 =
√

L/C, α = (R/Z0 +

GZ0)/2, β = ω
√

LC.
The numerical calculations made for this problem can be found in ps1:ps1_2.jl.

Exercise 2.4 Lossless transmission line with load.

A lossless transmission line of characteristic impedance Z0 = 75Ω is terminated to an un-
known complex impedance ZL. The transmission line is filled with air. The first voltage maxi-
mum is measured at a distance d = 9.7mm from the load and the voltage standing-wave ratio
on the line is measured to be VSWR = 2.33. The operating frequency is f = 3.0GHz.

a. Determine the location of the first current minimum.

b. What is the magnitude (amplitude) of the reflection coefficient |ΓL|.

c. What is the phase of the reflection coefficient ΘL?

d. Determine the load ZL.

Answer for Exercise 2.4
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Part a. Because the current has a different sign in the superposition sum, the current min/max
will be where there is a voltage max/min, so the first miniumum is at d = 9.7mm.

Showing this explicitly, the current amplitude is

(2.129)
|I(−l)| =

∣∣∣∣∣∣V+
0

Z0

∣∣∣∣∣∣∣∣∣e− jβ(−l) − ΓLe jβ(−l)
∣∣∣

=

∣∣∣∣∣∣V+
0

Z0

∣∣∣∣∣∣∣∣∣1 − |ΓL|e jΘL−2 jβl
∣∣∣.

The current minimum and maximums are respectively

|I(−l)|min =

∣∣∣∣∣∣V+
0

Z0

∣∣∣∣∣∣ (1 − |ΓL|)

|I(−l)|max =

∣∣∣∣∣∣V+
0

Z0

∣∣∣∣∣∣ (1 + |ΓL|)

(2.130)

and occur when ΘL − 2βl = 2πk, and ΘL − 2βl = (2k − 1)π respectively.
The first current minimum occurs when ΘL = 2βl, which is exactly where the first voltage

maximum also occurs.

Part b. We have R = G = 0, so

Z0 =

√
L
C

= 75Ω. (2.131)

We also have

vφ = c =
1
√

LC
. (2.132)

The VSWR is

(2.133)

VSWR =
Vmax

Vmin

=
1 + |ΓL|

1 − |ΓL|

= 2.33,

so

(2.134)1 + |ΓL| = (1 − |ΓL|) VSWR

or
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(2.135)

|ΓL| =
VSWR − 1
VSWR + 1

=
2.33 − 1
2.33 + 1

=
1.33
3.33

=
4/3

10/3
= 0.4 Ω.

Part c. The absolute voltage at z = −l is

(2.136)|V(−l)| =
∣∣∣V+

0

∣∣∣∣∣∣1 + |ΓL|e j(ΘL−2βl)
∣∣∣,

so the maximum was measured at

(2.137)ΘL − 2βd = 2π(0),

or

(2.138)

ΘL = 2βd

= 2
ω

vφ
d

=
4π f d

c

=
4π(3 × 109)(9.7 × 10−3)

3 × 108

= 1.219 rad.

The reflection coefficient can now be written out explicitly

(2.139)ΓŁ = 0.1377 + 0.3749 j Ω.

Part d. The load impedance is

(2.140)

ZL = Z0
1 + ΓL

1 − ΓL

= 75
1.4 + 0.049 j
0.6 − 0.049 j

= 71.29 + 63.6 j Ω.

The numerical results are computed in ps1:ps1_3.jl.



2.16 problems 69

Exercise 2.5 Parallel-plate transmission line.

Consider a parallel-plate transmission line of height d and width w (w � d). The plates are
filled with a lossless dielectric ε.

a. Calculate the capacitance per unit length C′.

b. Calculate the inductance per unit length L′.

c. Determine an expression for the characteristic impedance Z0.

d. Calculate the resistance per unit length R′. Assume that the conductivity of the plates is
σ and the skin depth is δs.

e. Calculate an expression for the attenuation constant α in terms of d.

f. Now consider that d/w = 0.1 and εr = 1. The plates have a conductivity of σ = 3.538 ×
107siemens/m. and the frequency of operation is f = 30GHz.
Calculate the characteristic impedance Z0.

g. Calculate the attenuation constant α numerically, and in dB/m when d = 1cm, 1mm and
1µm.

Answer for Exercise 2.5

Part a. To get some quick results, the transmission line can be treated as a large parallel plate
capacitor. First recall that for a single plate with linear charge density +(Q/l) on it, the electric
field is normal and outwards from the plate as in sketched in fig. 2.23.

Figure 2.23: Electric field between two plates

Using a Gaussian volume the width of the plate we have

(2.141)

∫
D · n̂dA = 2εEwl

= Q,

so the magnitude of the field for one plate is
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(2.142)E =
Q

2εwl

Introducing a second plate with equal but opposite charge density on it, we have cancelation
of the electric field outside of the plates, but a doubling within. The magnitude of the total
electric field between the plates is therefore

(2.143)E = −
Q
εwl

ŷ.

The voltage difference between the plates is

(2.144)
V =

∫ d

0
Edl

=
Qd
εwl

.

The capacitance per unit length is

(2.145)
C′ =

Q/l
V

=
(Q/l)(εwl)

Qd

C′ =
εw
d
. (2.146)

Here edge effects and charge distribution on the plates has been completely ignored. This is
also only one of the possible field modes in the cavity (TEM mode). This mode and the others
are covered in greater detail in [5] ch. 3.

Part b. For the magnetic field the situation is similar. Suppose the magnetic field is oriented
as sketched in fig. 2.24.

Figure 2.24: Magnetic field and flux between two plates
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Integrating over the loop C that surrounds the top plate we have

(2.147)

∮
D · dl = 2Hw

= I,

or

(2.148)H =
I

2w
.

Like the electric field, an opposite charge on the other plate leads to a doubled magnetic field
in the cavity, and no magnetic field outside the plates, so the total magnetic field magnitude in
the cavity is

(2.149)H =
I
w
.

Calculating the flux through the side we have

(2.150)

Φ =

∫
B · dA

= µHld

=
µIld

w
The inductance per unit length is

(2.151)L′ =
Φ/l

I
,

or

L′ =
µd
w
. (2.152)

Part c. Assuming a low-loss condition, the impedance is

(2.153)

Z0 =

√
L
C

=

√
µd
w

d
εw

=
d
w

√
µ

ε
,

or

(2.154)Z0 =
d
w
η.
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Part d. Referring to fig. 2.25, the RF resistance can be to the effective area that the field acts
on.

Figure 2.25: Skin depth for parallel waveguide.

The resistance per plate in a length l is

R =
l

σAeff

, (2.155)

so the total resistance per unit length is

R′ =
2

σwδs
. (2.156)

Part e. Using the low-loss approximation, we have

(2.157)

α =
1
2

(
R′

Z0
+���GZ0

)
=

1
2

(
2

σwδs

w
dη

)
=

1
σδs

1
dη
.

The leading quantity is identified in [5] (1.125) as the surface resistance

Rs =
1
σδs

=

√
ωµ

2σ
, (2.158)

so we can write

α =
Rs

dη
. (2.159)
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Part f. At these values of d/w we have

(2.160)Z0 = 37.8Ω.

Part g. With

(2.161)
Rs = 0.05786Ω

η = 377.9.Ω,

we have

α(1 cm) = 0.0153108m−1

α(1 mm) = 0.153108m−1

α(1µm) = 153.108m−1

(2.162)

This by itself isn’t a reasonable quantity to convert to dB, since it isn’t a ratio of two quantities.
Asking about this, it turns out that the quantity of interest is the loss ratio

(2.163)L ≡ e−2α

This is of interest because the voltage is of the from

(2.164)V = V0e−αze− jβz,

so the ratio of powers relative to the z = 0 power is

(2.165)
P
P0

=
|V |2

|V0|
2

= e−2αz.

The loss factor for one wavelength (something that could be expressed as dB/m) would be

(2.166)e−2αλ,

whereas the loss factor for one meter ( z = 1 ), is

(2.167)L = e−2α.

In dB losses are

(2.168)−10 log10 L = −10 log10 e−2α

= 20α log10 e.
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Note that the sign has been toggled to express the result as dB loss (as opposed to dB gain,
where we’d normally want a positive sign)

This is really the quantity that was desired in this part of the problem. That is

L(1 cm) = 0.132988 dB/m

L(1 mm) = 1.32988 dB/m

L(1µm) = 1329.88 dB/m.

(2.169)

Should this loss factor have been desired in Np/m (Nepers per meter), the loss factor would
be

ln e−α = −α, (2.170)

so the raw values of α, up to a sign, can be considered to be in “Neper” units.
Numeric substitutions for this problem were performed in ps1:ps1_4.jl
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I M P E DA N C E M AT C H I N G T R A N S F O R M E R S

3.1 multisection transformers

Using a transformation of the form fig. 3.2 it is possible to optimize for maximum power deliv-
ery, using for example a matching transformation Zin = Z2

1/RL = Z0, or Z1 =
√

RLZ0. Unfortu-
nately, such a transformation does not allow any control over the bandwidth. This results in a
pinched frequency response for which the standard solution is to add more steps as sketched in
fig. 3.1.

Figure 3.1: Pinched frequency response.

This can be implemented in electronics, or potentially geometrically as in this sketch of a
microwave stripline transformer implementation fig. 3.3.

To find a multistep transformation algebraically can be hard, but it is easy to do on a Smith
chart. The rule of thumb is that we want to stay near the center of the chart with each transfor-
mation.

There is however, a closed form method of calculating a specific sort of multisection transfor-
mation that is algebraically tractable. That method uses a chain of λ/4 transformers to increase
the bandwidth as sketched in fig. 3.4.

The total reflection coefficient can be approximated to first order by summing the reflections
at each stage (without considering there may be other internal reflections of transmitted field
components). Algebraically that is

Γ(Θ) ≈ Γ0 + Γ1e−2 jΘ + +Γ2e−4 jΘ + · · · + ΓNe−2N jΘ, (3.1)

75
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(a)

(b)

Figure 3.2: Single and multiple stage impedance matching.

Figure 3.3: Stripline implementation of staged impedance matching.

Figure 3.4: Multiple λ/4 transformers.
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where

Γn =
Zn+1 − Zn

Zn+1 + Zn
(3.2)

Why? Consider reflections at the Z_1, Z_2 interface as sketched in fig. 3.5.

Figure 3.5: Single stage of multiple λ/4 transformers.

Assuming small reflections, where |Γ| � 1 then T = 1 + Γ ≈ 1. Here

(3.3)

Θ = βl

=
2π
λ

λ

4
=
π

2
.

at the design frequency ω0. We assume that Zn are either monotonically increasing if RL > Z0,
or decreasing if RL < Z0.

Binomial multisection transformers Let

Γ(Θ) = A
(
1 + e−2 jΘ

)N
(3.4)

This type of a response is maximally flat, and is plotted in fig. 3.6.
The absolute value of the reflection coefficient is

(3.5)|Γ(Θ)| = |A|
(
e jΘ + e− jΘ

)N

= 2N |A| cosN Θ.
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Figure 3.6: Binomial transformer.

When Θ = π/2 this is clearly zero. It’s derivatives are

d|Γ|
dΘ

= −N cosN−1 Θ sin Θ

d2|Γ|
dΘ2 = −N cosN−1 Θ cos ΘN(N − 1) cosN−2 Θ sin Θ

d3|Γ|
dΘ3 = · · ·

(3.6)

There is a cosN−k term for all derivatives dk/dΘk where k ≤ N − 1, so for an N-section
transformer

dn

dΘn |Γ(Θ)|ω0 = 0, (3.7)

for n = 1, 2, · · · ,N − 1. The constant A is determined by the limit Θ → 0, so

Γ(0) = 2N A =
ZL − Z0

ZL + Z0
, (3.8)

because the various Θ sections become DC wires when the segment length goes to zero. This
gives

A = 2−N ZL − Z0

ZL + Z0
. (3.9)

The reflection coefficient can now be expanded using the binomial theorem
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(3.10)
Γ(Θ) = A

(
1 + e2 jΘ

)N

=

N∑
k=0

(
N
k

)
e−2 jkΘ

Recall that

(
N
k

)
=

N!
k! (N − k)!

, (3.11)

providing a symmetric set of values

(
N
1

)
=

(
N
N

)
= 1(

N
1

)
=

(
N

N − 1

)
= N(

N
k

)
=

(
N

N − k

)
.

(3.12)

Equating eq. (3.10) with eq. (3.1) we have

Γk = A
(
N
k

)
. (3.13)

Approximation for Zk From [1] (4.6.4), a log series expansion valid for all z is

ln z =

∞∑
k=0

1
2k + 1

(
z − 1
z + 1

)2k+1

, (3.14)

so for x near unity a first order approximation of a logarithm is

ln x ≈ 2
x − 1
x + 1

. (3.15)

Assuming that Zk+1/Zk is near unity we have



80 impedance matching transformers

(3.16)

1
2

ln
Zk+1

Zk
≈

Zk+1
Zk
− 1

Zk+1
Zk

+ 1

=
Zk+1 − Zk

Zk+1 + Zk
= Γk.

Using this approximation, we get

(3.17)

ln
Zk+1

Zk
≈ 2Γk

= 2A
(
N
k

)
= 2

(
2−N

) (N
k

)
ZL − Z0

ZL + Z0

≈ 2−N
(
N
k

)
ln

ZL

Z0
,

I asked what business do we have in assuming that ZL/Z0 is near unity? The answer was
that it isn’t but surprisingly it works out well enough despite that. As an example, consider
Z0 = 100Ω and RL = 50Ω. The exact expression

(3.18)
ZL − Z0

ZL + Z0
=

100 − 50
100 + 50

= −0.333,

whereas

(3.19)
1
2

ln
ZL

Z0
= −0.3466,

which is pretty close after all.
Regardless of whether or not that last approximation is used, one can proceed iteratively to

Zk+1 starting with k = 0.

Bandwidth To evaluate the bandwidth, let Γm be the maximum tolerable reflection coefficient
over the passband, as sketched in fig. 3.7.

That is

(3.20)Γm = 2N |A||cos Θm|
N

= 2N |A| cosN Θm,
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Figure 3.7: Max tolerable reflection.

for Θm < π/2. Then

(3.21)Θm = arccos

1
2

(
Γm

|A|

)1/N
The relative width of the interval is

(3.22)

∆ fmax

f0
=

∆Θmax

Θ0

=
2(Θ0 −Θmax

Θ0

= 2 −
2Θmax

Θ0

= 2 −
4Θmax

π

= 2 −
4
π

arccos

1
2

(
Γmax

|A|

)1/N .
Example 3.1: Three section binomial transformer.

Design a 3-section binomial transformer to match RL = 50Ω to a line Z0 = 100Ω. Calcu-
late the BW based on a maximum Γm = 0.05.

Solution The scaling factor

A = 2−N ZL − L0

ZL + Z0
≈

1
2N+1 ln

ZL

Z0
= −0.0433 (3.23)

Now use
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(3.24)ln
Zn+1

Zn
≈ 2−N

(
N
n

)
ln

RL

Z0
,

starting from

• n = 0.

ln
Z1

Z0
≈ 2−3

(
3
0

)
ln

RL

Z0
, (3.25)

or

(3.26)
ln Z1 = ln Z0 + 2−3

(
3
0

)
ln

RL

Z0

= ln 100 + 2−3(1) ln 0.5
= 4.518,

so

Z1 = 91.7Ω (3.27)

• n = 1

(3.28)ln Z2 = ln Z1 + 2−3
(
3
1

)
ln

50
100

= 4.26

so

(3.29)Z2 = 70.7Ω

• n = 2

(3.30)ln Z3 = ln Z2 + 2−3
(
3
2

)
ln

50
100

= 4.0,
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so

(3.31)Z3 = 54.5Ω.

With the fractional BW for Γm = 0.05, where 10 log10 |Γm|
2 = −26dB

(3.32)

∆ f
f0
≈ 2 −

4
π

arccos

1
2

(
Γm

|A|

)1/N
= 2 −

4
π

arccos

1
2

(
0.05

0.0433

)1/3
= 0.7

At 2GHz, BW = 0.7(70%) = 1.4GHz, or [2.3, 2.7]GHz, whereas a single λ/4 trans-
former ZT =

√
(100)(50) = 70.7Ω yields a BW of just 0.36GHz (18%).

3.2 continuum transformer

A non-discrete impedance matching transformation, as sketched in fig. 3.8, is also possible.

Figure 3.8: Tapered impedance matching.

∆Γ =
(Z + ∆Z) − Z
(Z + ∆Z) + Z

=
∆Z
2Z

(3.33)

∆Z → 0 (3.34)
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(3.35)

dΓ =
dZ
2Z

=
1
2

d(ln Z)
dz

=
Z0

Z
d(Z/Z0)

dz

=
1
Z

dZ
dz
.

Hence as we did for multisection transformers, associate ∆Γ with e−2 jβz as sketched in
fig. 3.9.

Figure 3.9: Reflection coefficient over an interval

assuming small reflections (i.e. Z(z) is a slowly varying (adiabatic). Then

(3.36)
Γ(ω) =

∫ L

0
e−2 jβzdΓ

=
1
2

∫ L

0
e−2 jβz d(ln Z)

dz
dz

This supplies the means to calculate the reflection coefficient for any impedance curve. As
with the step impedance matching process, it is assumed that only first order reflections are of
interest.

3.3 exponential taper

Let

Z(z) = Z0eaz, 0 < z < L (3.37)

subject to

Z(0) = Z0

Z(L) = Z0eaL = ZL,
(3.38)
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which gives

ln
ZL

Z0
= aL, (3.39)

or

a =
1
L

ln
ZL

Z0
(3.40)

Also

d
dz

ln
ZL

Z0
=

d
dz

(az) = a, (3.41)

Hence

(3.42)

Γ(ω) =
1
2

∫ L

0
e−2 jβz d

dz
ln

ZL

Z0
dz

=
a
2

∫ L

0
e−2 jβzdz

=
1

2L
ln

ZL

Z0

e−2 jβz

−2 jβ

∣∣∣∣∣∣L
0

=
1

2Lβ
ln

ZL

Z0

1 − e−2 jβL

2 j

=
1
2

ln
ZL

Z0
e− jβL sin(βL)

βL
,

or

(3.43)Γ(ω) =
1
2

ln
ZL

Z0
e− jβL sinc(βL).

1. β is constant with Z varying: this is good only for TEM lines.

2. |Γ| decreases with increasing length.

3. An electrical length βL > π, is required to minimize low frequency mismatch (L > λ/2).

This is sketched in fig. 3.10.
Want:

(3.44)βL = π,

or

(3.45)
ωc

vφ
L = π

where ωc is the cutoff frequency. This gives

(3.46)ωc =
πvφ
L
.
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Figure 3.10: Exponential taper reflection coefficient.

Triangular Taper

Z(z) =

 Z0e2(z/L)2 ln(ZL/Z0) 0 ≤ z ≤ L/2

Z0e(4z/L−2z2−1) ln(ZL/Z0) L/2 ≤ z ≤ L
(3.47)

d
dz

ln(Z/Z0) =

 (4z/L2) ln(ZL/Z0) 0 ≤ z ≤ L/2

(4/L − 4z/L2) ln(ZL/Z0) L/2 ≤ z ≤ L
(3.48)

In this case

(3.49)Γ(ω) =
1
2

e−βL ln
ZL

Z0
e− jβL sinc2(βL/2).

Compared to the exponential taper sinc(βL) for the βL > 2π the peaks of |Γ| are lower, but
the first null occurs at βL = 2π whereas for the exponential taper it occurs at βL = π. This is
sketched in fig. 3.11. The price to pay for this is that the zero is at 2π so we have to make it
twice as long to get the ripple down.

Figure 3.11: Triangular taper impedance curve.
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Klopfenstein Taper For a given taper length L, the Klopfenstein taper is optimum in the sense
that the reflection coefficient in the passband is minimum. Alternatively, for a given minimum
reflection coefficient in the passband, the Klopfenstein taper yields the shortest length L.

Definition:

ln Z =
1
2

ln(Z0ZL) +
Γ0

cosh A
A2φ(2z/L − 1, A), 0 ≤ z ≤ L, (3.50)

where

φ(x, A) =

∫ x

0

I1(A
√

1 − y2)

A
√

1 − y2
dy, |x| ≤ 1. (3.51)

Here I1(x) is the modified Bessel function. Note that

φ(0, A) = 0

φ(x, 0) = x/2

φ(1, A) =
cosh A − 1

A2

(3.52)

The resulting reflection coefficient is

Γ(ω) =


Γ0e− jβL

cos

√
(βL)2 − A2

cosh A βL > A

Γ0e− jβL
cos

√
A2 − (βL)2

cosh A βL < A

, (3.53)

where as usual

Γ0 =
ZL − Z0

ZL + Z0
≈

1
2

ln(ZL/Z0). (3.54)

The passband is defined by βL ≥ A and the maximum ripple in the passband is

Γm =
Γ0

cosh A
. (3.55)
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Example 3.2: Triangular taper vs. exponential taper vs. Klopfenstein taper.

Design a triangular taper, an exponential taper, and a Klopfenstein taper (with Γm = 0.02 )
to match a 50Ω load to a 100Ω line.

• Triangular taper:

Z(z) =

 Z0e2(z/L)2 ln ZL/Z0 0 ≤ z ≤ L/2

Z0e(4z/L−2z2/L2−1) ln ZL/Z0 L/2 ≥ z ≥ L
(3.56)

The resulting Γ is

|Γ| =
1
2

ln(ZL/Z0) sinc2 (βL/2) . (3.57)

• Exponential taper:

Z(z) = Z0eaz, 0 ≤ z ≤ L

a =
1
L

ln(ZL/Z0) =
0.693

L

|Γ| =
1
2

ln(ZL/Z0) sinc(βL)

(3.58)

• Klopfenstein taper:

Z(z) =
1
2

ln(ZL/Z0) = 0.346

A = cosh−1
(

Γ0

Γm

)
= cosh−1

(
0.346
0.02

)
= 3.543

|Γ| = Γ0

cos
√

(βL)2 − A2

cosh A
,

(3.59)

The passband βL > A = 3.543 = 1.13π. The impedance Z(z) must be evaluated
numerically.

To illustrate some of the differences, we are referred to fig. 5.21 [5]. It is noted that
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1. The exponential taper has the lowest cutoff frequency βL = π. Then is the Klopfen-
stein taper which is close βL = 1.13π. Last is the triangular with βL = 2π.

2. The Klopfenstein taper has the lowest |Γ| in the passband and meets the spec of
Γm = 0.02. The worst |Γ| in the passband is from the exponential taper and the
triangular ripple is between the two others.
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A
U S E F U L F O R M U L A S A N D R E V I E W

Terminology review

Zin = R + jX (A.1)

Yin = G + jB (A.2)

• Zin : impedance

• R : resistance

• X : reactance

• Yin : admittance

• G : conductance

• B : susceptance

Apparently this notation goes all the way back to Heavyside!

Periodic motion

vφ =
ω

β
=
λ

T
(A.3)

β =
2π
λ

=
ω

vφ
(A.4)

Units

V = (kgm2)/(s3A) (A.5)

A = C/s (A.6)

93



94 useful formulas and review

Ω = V/A (A.7)

F = As/V = s/Ω (A.8)

H = Vs/A = Ωs (A.9)

W = Vs (A.10)

[ε] = F/m (A.11)

[D] = C/m2 (A.12)

[E] = V/m (A.13)

[H] = A/m (A.14)

[B] = Wb/m (A.15)

[J] = A/m2 (A.16)

[ρ] = C/m3 (A.17)

[σ] = S/m = [ωε] = F/m/s = A/V/m = f/m (A.18)

[µ] = H/m (A.19)
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Consistutive relations

B = µH (A.20)

D = εE (A.21)

J = σE (A.22)

constants

c = 3 × 108 m/s (A.23)

ε0 = 8.8 × 10−12 F/m (A.24)

µ0 = 4π × 10−7 H/m (A.25)

η0 = µ0c ≈ 120πΩ (A.26)





B
O D D S A N D E N D S

b.1 average power for circuit elements

In [5] §2.2 is a comparison of field energy expressions with their circuit equivalents. It’s clearly
been too long since I’ve worked with circuits, because I’d forgotten all the circuit energy ex-
pressions:

WR =
R
2
|I|2

WC =
C
4
|V |2

WL =
L
4
|I|2

WG =
G
2
|V |2

(B.1)

Here’s a recap of where these come from

Energy lost to resistance Given

v(t) = Ri(t) (B.2)

the average power lost to a resistor is

(B.3)

pR =
1
T

∫ T

0
v(t)i(t)dt

=
1
T

∫ T

0
Re(Ve jωt) Re(Ie jωt)dt

=
1

4T

∫ T

0

(
Ve jωt + V∗e− jωt

) (
Ie jωt + I∗e− jωt

)
dt

=
1

4T

∫ T

0

(
VIe2 jωt + V∗I∗e−2 jωt + VI∗ + V∗I

)
dt

=
1
2

Re(VI∗)

=
1
2

Re(IRI∗)

=
R
2
|I|2.
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Here it is assumed that the averaging is done over some integer multiple of the period, which
kills off all the exponentials.

Energy stored in a capacitor I tried the same sort of analysis for a capacitor in phasor form,
but everything canceled out. Referring to [2], the approach used to figure this out is to operate
first strictly in the time domain. Specifically, for the capacitor where i = Cdv/dt the power
supplied up to a time t is

(B.4)
pC(t) =

∫ t

−∞

C
dv
dt

v(t)dt

=
1
2

Cv2(t).

The v2(t) term can now be expanded in terms of phasors and averaged for

(B.5)

pC =
C
2T

∫ T

0

1
4

(
Ve jωt + V∗e− jωt

) (
Ve jωt + V∗e− jωt

)
dt

=
C
2T

∫ T

0

1
4

2|V |2dt

=
C
4
|V |2.

Energy stored in an inductor The inductor energy is found the same way, with

(B.6)
pL(t) =

∫ t

−∞

L
di
dt

i(t)dt

=
1
2

Li2(t),

which leads to

pL =
L
4
|I|2. (B.7)

Energy lost due to conductance Finally, we have conductance. In phasor space that is defined
by

G =
I
V

=
1
R
, (B.8)

so power lost due to conductance follows from power lost due to resistance. In the average
we have



B.1 average power for circuit elements 99

(B.9)

pG =
1

2G
|I|2

=
1

2G
|VG|2

=
G
2
|V |2





C
M AT H E M AT I C A N OT E B O O K S

These Mathematica notebooks, some just trivial ones used to generate figures, others more
elaborate, and perhaps some even polished, can be found in

https://github.com/peeterjoot/mathematica/tree/master/.
The free Wolfram CDF player, is capable of read-only viewing these notebooks to some

extent.

• Feb 5, 2016 ece1236/transmissionLineUnits.nb

UnitConvert verification that 1/
√

FH is an Ohm, and that 1/
√

(F/m)(H/m) = m/s

101

https://github.com/peeterjoot/mathematica/tree/master/
http://www.wolfram.com/cdf-player/
https://raw.github.com/peeterjoot/mathematica/master/ece1236/transmissionLineUnits.nb




D
M AT L A B N OT E B O O K S

These Matlab notebooks, some just trivial ones used to generate figures, others more elaborate,
and perhaps some even polished, can be found in

https://github.com/peeterjoot/matlab.
These notebooks are text files, but a matlab product is required to execute them.

• Feb 4, 2016 ece1236/smith/run.m

run mathworks plotSmithChart() and save output to a file.
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https://github.com/peeterjoot/matlab
https://raw.github.com/peeterjoot/matlab/master/ece1236/smith/run.m




E
J U L I A N OT E B O O K S

These Julia notebooks, can be found in
https://github.com/peeterjoot/julia.
These notebooks are text files. The julia program, available freely at www.julialang.org, is

required to execute them. Some Julia code can also be evaluated with Matlab.

• Feb 6, 2016 ece1236/ps1/ps1_3.jl

Numerical substitutions for ps1 p3.

• Feb 6, 2016 ece1236/ps1/ps1_2.jl

Numerical substitutions for ps1 p2.

• Feb 8, 2016 ece1236/ps1/ps1_4.jl

Numerical substitutions for ps1 p4.

• Feb 8, 2016 ece1236/lecturenotes7/multisectionTransformer.jl

This plots Γ(Θ) =
∣∣∣1 − exp (2 jθ)

∣∣∣N , the multisection binomial quarter wavelength trans-
former.

• Feb 10, 2016 ece1236/lecturenotes7/multisectionExample.jl

A quick numerical check of the logarithm approximation.
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https://github.com/peeterjoot/julia
www.julialang.org
https://raw.github.com/peeterjoot/julia/master/ece1236/ps1/ps1_3.jl
https://raw.github.com/peeterjoot/julia/master/ece1236/ps1/ps1_2.jl
https://raw.github.com/peeterjoot/julia/master/ece1236/ps1/ps1_4.jl
https://raw.github.com/peeterjoot/julia/master/ece1236/lecturenotes7/multisectionTransformer.jl
https://raw.github.com/peeterjoot/julia/master/ece1236/lecturenotes7/multisectionExample.jl
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admittance, 93

conductance, 93

impedance, 93
impedance inverter, 53

Mathematica, 63, 66, 68, 74, 101

reactance, 93
resistance, 93

standing wave ratio, 46
susceptance, 93

telegrapher’s equations, 34
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