
Peeter Joot
peeterjoot@protonmail.com

Integer square root

In [1] is a rather mysterious looking constant expression formula for an integer square root. This is a
function that returns the smallest integer for which the square is less than the value to take the root
of. Check out the black magic he used

1 / / S t r o u s t r u p 1 0 . 4 : c o n s t e x p r c a p a b l e i n t e g e r s q u a r e r o o t f u n c t i o n
2 constexpr i n t i s q r t _ h e l p e r (i n t sq , i n t d , i n t n)
3 {
4 return sq <= n ? i s q r t _ h e l p e r (sq + d , d + 2 , n) : d ;
5 }
6
7 constexpr i n t i s q r t (i n t n)
8 {
9 return i s q r t _ h e l p e r (1 , 3 , n) /2 1 ;

10 }

The point of this construction was really to illustrate that it allows complex expressions to be used
as compile time constants. I wonder at what point various compilers will give up trying to evaluate
such expressions?

1.1 Let’s take this apart a bit.

Consider the first few values of n > 0.

• n = 0. Here we have a call to isqrt_helper(1, 3, 0) so the 1 ≤ 0 predicate is false, and the return
value is just 3.

For that value we have (using integer arithmetic):

(1.1)
3
2
− 1 = 0,

as desired.

• n = 1. Here we have a call to isqrt_helper(1, 3, 1) so the 1 ≤ 1 predicate is true, resulting in a
second call isqrt_helper(4, 5, 1). For that call the 4 ≤ 1 predicate is false, resulting in a return
value of 5.

1

This time we have a final result of

(1.2)
5
2
− 1 = 1,

as desired again. The result will be the same for any value n ∈ [1, 3].

• n = 4. We will end up with a call to isqrt_helper(4, 5, 4) for which the 4 ≤ 4 predicate is true,
resulting in a followup call of isqrt_helper(9, 7, 4). For that call the 9 ≤ 4 predicate is false,
resulting in a return value of 7.

This time we have a final result of

(1.3)
7
2
− 1 = 2,

as expected. We get the same result for any value n ∈ [4, 8].

1.2 Recurrence relations

The rough pattern of the magic involved can be seen. We have a sequence of calls

• isqrt_helper(1, 3, n),

• isqrt_helper(4, 5, n),

• isqrt_helper(9, 7, n),

• isqrt_helper(16, 9, n),

which terminates at the point where the first (square) parameter exceeds that value that we are
taking the root of. Let the parameters of the sequence of calls be sk, and dk, so that with s0 = 1, d0 = 3
the k ∈ [0, ...] call to the helper function is qk = isqrt_helper(sk, dk, n).

The sequence for the second parameter, the eventual return value, can be summarized compactly
as dk = 3 + 2k. It is not entirely obvious how we end up with a square for the values sk = sk−1 + dk−1,
but this follows by summation. For k > 1 that is

2

(1.4)

sk = sk−1 + dk−1
= s0 + d0 + d1 + dk−1

= s0 +
k−1

∑
m=0

dm

= s0 +
k−1

∑
m=0

(3 + 2m)

= s0 +
k

∑
m=1

(3 + 2(m − 1))

= s0 +
k

∑
m=1

(1 + 2m)

= 1 + k + 2
k

∑
m=1

m

= 1 + k + 2
k(k + 1)

2
= k2 + 2k + 1
= (k + 1)2.

This clearly holds for the boundary cases k = 0, 1 as well. This allows the helper function action to
be summarized more compactly

(1.5)isqrt_helper(1, 3, n) = 3 + 2k,

where k is the smallest integer such that (k + 1)2 > n. After integer scaling the final result is

(1.6)(3 + 2k)/2− 1 = k.

This little beastie makes sense after deconstruction, but it was very Jackson like to toss this into the
book without comment or explanation.

As pointed out by Pramod Gupta, there’s a spooky appearance of collaboration between Strous-
trup and Jackson’s publishers, not entirely limited to the book covers.

3

https://youtu.be/CPPX4kwqh80?t=123

Bibliography

[1] Bjarne Stroustrup. The C++ Programming Language, 4th Edition. Addison-Wesley, 2014. 1

4

