# Peeter Joot <br> peeterjoot@protonmail.com 

## Integer square root

In [1] is a rather mysterious looking constant expression formula for an integer square root. This is a function that returns the smallest integer for which the square is less than the value to take the root of. Check out the black magic he used

```
// Stroustrup 10.4: constexpr capable integer square root function
constexpr int isqrt_helper( int sq, int d, int n )
{
    return sq <= n ? isqrt_helper( sq + d, d + 2, n ) : d ;
5 }
constexpr int isqrt( int n )
{
    return isqrt_helper( 1, 3, n )/2 1 ;
}
```

The point of this construction was really to illustrate that it allows complex expressions to be used as compile time constants. I wonder at what point various compilers will give up trying to evaluate such expressions?
1.1 Let's take this apart a bit.

Consider the first few values of $n>0$.

- $n=0$. Here we have a call to isqrt_helper $(1,3,0)$ so the $1 \leq 0$ predicate is false, and the return value is just 3.
For that value we have (using integer arithmetic):

$$
\begin{equation*}
\frac{3}{2}-1=0, \tag{1.1}
\end{equation*}
$$

as desired.

- $n=1$. Here we have a call to isqrt_helper $(1,3,1)$ so the $1 \leq 1$ predicate is true, resulting in a second call isqrt_helper $(4,5,1)$. For that call the $4 \leq 1$ predicate is false, resulting in a return value of 5 .

This time we have a final result of

$$
\begin{equation*}
\frac{5}{2}-1=1, \tag{1.2}
\end{equation*}
$$

as desired again. The result will be the same for any value $n \in[1,3]$.

- $n=4$. We will end up with a call to isqrt_helper $(4,5,4)$ for which the $4 \leq 4$ predicate is true, resulting in a followup call of isqrt_helper $(9,7,4)$. For that call the $9 \leq 4$ predicate is false, resulting in a return value of 7 .
This time we have a final result of

$$
\begin{equation*}
\frac{7}{2}-1=2 \tag{1.3}
\end{equation*}
$$

as expected. We get the same result for any value $n \in[4,8]$.

### 1.2 Recurrence relations

The rough pattern of the magic involved can be seen. We have a sequence of calls

- isqrt_helper( $1,3, n$ ),
- isqrt_helper $(4,5, n)$,
- isqrt_helper $(9,7, n)$,
- isqrt_helper $(16,9, n)$,
which terminates at the point where the first (square) parameter exceeds that value that we are taking the root of. Let the parameters of the sequence of calls be $s_{k}$, and $d_{k}$, so that with $s_{0}=1, d_{0}=3$ the $k \in[0, \ldots]$ call to the helper function is $q_{k}=$ isqrt_helper $\left(s_{k}, d_{k}, n\right)$.

The sequence for the second parameter, the eventual return value, can be summarized compactly as $d_{k}=3+2 k$. It is not entirely obvious how we end up with a square for the values $s_{k}=s_{k-1}+d_{k-1}$, but this follows by summation. For $k>1$ that is

$$
\begin{align*}
s_{k} & =s_{k-1}+d_{k-1} \\
& =s_{0}+d_{0}+d_{1}+d_{k-1} \\
& =s_{0}+\sum_{m=0}^{k-1} d_{m} \\
& =s_{0}+\sum_{m=0}^{k-1}(3+2 m) \\
& =s_{0}+\sum_{m=1}^{k}(3+2(m-1))  \tag{1.4}\\
& =s_{0}+\sum_{m=1}^{k}(1+2 m) \\
& =1+k+2 \sum_{m=1}^{k} m \\
& =1+k+2 \frac{k(k+1)}{2} \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2}
\end{align*}
$$

This clearly holds for the boundary cases $k=0,1$ as well. This allows the helper function action to be summarized more compactly

$$
\begin{equation*}
\text { isqrt_helper }(1,3, n)=3+2 k \tag{1.5}
\end{equation*}
$$

where $k$ is the smallest integer such that $(k+1)^{2}>n$. After integer scaling the final result is

$$
\begin{equation*}
(3+2 k) / 2-1=k . \tag{1.6}
\end{equation*}
$$

This little beastie makes sense after deconstruction, but it was very Jackson like to toss this into the book without comment or explanation.

As pointed out by Pramod Gupta, there's a spooky appearance of collaboration between Stroustrup and Jackson's publishers, not entirely limited to the book covers.

## Bibliography

[1] Bjarne Stroustrup. The C++ Programming Language, 4th Edition. Addison-Wesley, 2014. 1

