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Application of Stokes Theorem to Maxwell equation

The relativistic form of Maxwell’s equation in Geometric Algebra is

(1.1)∇F =
1

cε0
J,

where∇ = γµ∂µ is the spacetime gradient, and J = (cρ, J) = Jµγµ is the four (vector) current density.
The pseudoscalar for the space is denoted I = γ0γ1γ2γ3, where the basis elements satisfy γ2

0 = 1 =
−γ2

k , and a dual basis satisfies γµ · γν = δν
µ. The electromagnetic field F is a composite multivector

F = E + IcB. This is actually a bivector because spatial vectors have a bivector representation in the
space time algebra of the form E = Ekγkγ0.

A dual representation, with F = IG is also possible

(1.2)∇G =
I

cε0
J.

Either form of Maxwell’s equation can be split into grade one and three components. The standard
(non-dual) form is

(1.3)
∇ · F =

1
cε0

J

∇ ∧ F = 0,

and the dual form is

(1.4)
∇ · G = 0

∇ ∧ G =
I

cε0
J.

In both cases a potential representation F = ∇∧ A, where A is a four vector potential can be used
to kill off the non-current equation. Such a potential representation reduces Maxwell’s equation to

(1.5)∇ · F =
1

cε0
J,

or
(1.6)∇ ∧ G =

I
cε0

J.
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In both cases, these reduce to

(1.7)∇2A −∇ (∇ · A) =
1

cε0
J.

This can clearly be further simplified by using the Lorentz gauge, where ∇ · A = 0. However, the
aim for now is to try applying Stokes theorem to Maxwell’s equation. The dual form eq. (1.6) has
the curl structure required for the application of Stokes. Suppose that we evaluate this curl over the
three parameter volume element d3x = i dx0dx1dx2, where i = γ0γ1γ2 is the unit pseudoscalar for the
spacetime volume element.

(1.8)

∫
V

d3x · (∇ ∧ G) =
∫

V
d3x ·

(
γµ ∧ ∂µG

)
=
∫

V

(
d3x · γµ

)
· ∂µG

= ∑
µ 6=3

∫
V

(
d3x · γµ

)
· ∂µG.

This uses the distibution identity As · (a∧ Ar) = (As · a) · Ar which holds for blades As, Ar provided
s > r > 0. Observe that only the component of the gradient that lies in the tangent space of the three
volume manifold contributes to the integral, allowing the gradient to be used in the Stokes integral
instead of the vector derivative (see: [1]). Defining the the surface area element

(1.9)
d2x = ∑

µ 6=3
i · γµ 1

dxµ
d3x

= γ1γ2dxdy + cγ2γ0dtdy + cγ0γ1dtdx,

Stokes theorem for this volume element is now completely specified

(1.10)
∫

V
d3x · (∇ ∧ G) =

∫
∂V

d2 · G.

Application to the dual Maxwell equation gives

(1.11)
∫

∂V
d2x · G =

1
cε0

∫
V

d3x · (I J).

After some manipulation, this can be restated in the non-dual form

∫
∂V

1
I

d2x ∧ F =
1

cε0 I

∫
V

d3x ∧ J. (1.12)

It can be demonstrated that using this with each of the standard basis spacetime 3-volume elements
recovers Gauss’s law and the Ampere-Maxwell equation. So, what happened to Faraday’s law and
Gauss’s law for magnetism? With application of Stokes to the curl equation from eq. (1.3), those
equations take the form ∫

∂V
d2x · F = 0. (1.13)

2



Exercise 1.1

Demonstrate that the Ampere-Maxwell equation and Gauss’s law can be recovered from the trivec-
tor (curl) equation eq. (1.6).

Answer for Exercise 1.1
The curl equation is a trivector on each side, so dotting it with each of the four possible trivectors

γ0γ1γ2, γ0γ2γ3, γ0γ1γ3, γ1γ2γ3 will give four different scalar equations. For example, dotting with
γ0γ1γ2, we have for the curl side

(1.14)(γ0γ1γ2) ·
(
γµ ∧ ∂µG

)
= ((γ0γ1γ2) · γµ) · ∂µG
= (γ0γ1) · ∂2G + (γ2γ0) · ∂1G + (γ1γ2) · ∂0G,

and for the current side, we have

(1.15)

1
ε0c

(γ0γ1γ2) · (I J) =
1

ε0c
〈γ0γ1γ2(γ0γ1γ2γ3)J〉

=
1

ε0c
〈−γ3 J〉

=
1

ε0c
γ3 · J

=
1

ε0c
J3,

so we have
(1.16)(γ0γ1) · ∂2G + (γ2γ0) · ∂1G + (γ1γ2) · ∂0G =

1
ε0c

J3.

Similarily, dotting with γ013, γ023, andγ123 respectively yields

(1.17)

γ01 · ∂3G + γ30∂1G + γ13∂0G = − 1
ε0c

J2

γ02 · ∂3G + γ30∂2G + γ23∂0G =
1

ε0c
J1

γ12 · ∂3G + γ31∂2G + γ23∂1G = − 1
ε0

ρ.

Expanding the dual electromagnetic field, first in terms of the spatial vectors, and then in the space
time basis, we have

(1.18)

G = −IF
= −I (E + IcB)
= −IE + cB.
= −IE + cBkγkγ0.

=
1
2

εrstγrγsEt + cBkγkγ0.
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So, dotting with a spatial vector will pick up a component of B, we have

(1.19)

(γm ∧ γ0) · ∂µG = (γm ∧ γ0) · ∂µ

(
1
2

εrstγrγsEt + cBkγkγ0

)
= c∂µBk〈γmγ0γkγ0〉
= c∂µBk

〈
γmγ0γ0γk

〉
= c∂µBkδk

m

= c∂µBm.

Written out explicitly the electric field contributions to G are

(1.20)

−IE = −γ0123k0Ek

= −γ123kEk

=


γ12E3 k = 3
γ31E2 k = 2
γ23E1 k = 1

,

so

(1.21)

γ23 · G = −E1

γ31 · G = −E2

γ12 · G = −E3.

We now have the pieces required to expand eq. (1.16) and eq. (1.17), which are respectively

(1.22)

−c∂2B1 + c∂1B2 − ∂0E3 =
1

ε0c
J3

−c∂3B1 + c∂1B3 + ∂0E2 = − 1
ε0c

J2

−c∂3B2 + c∂2B3 − ∂0E1 =
1

ε0c
J1

−∂3E3 − ∂2E2 − ∂1E1 = − 1
ε0

ρ

which are the components of the Ampere-Maxwell equation, and Gauss’s law

(1.23)

1
µ0

∇ × B − ε0
∂E
∂t

= J

∇ · E =
ρ

ε0
.

Exercise 1.2

Prove eq. (1.12).
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Answer for Exercise 1.2
The proof just requires the expansion of the dot products using scalar selection

(1.24)
d2x · G =

〈
d2x(−I)F

〉
= −

〈
Id2xF

〉
= −I

(
d2x ∧ F

)
,

and for the three volume dot product

(1.25)
d3x · (I J) =

〈
d3x I J

〉
= −

〈
Id3x J

〉
= −I

(
d3x ∧ J

)
.

Exercise 1.3

Using each of the four possible spacetime volume elements, write out the components of the Stokes
integral eq. (1.12).

Answer for Exercise 1.3
The four possible volume and associated area elements are

(1.26)

d3x = cγ0γ1γ2dtdxdy d2x = γ1γ2dxdy + cγ2γ0dydt + cγ0γ1dtdx

d3x = cγ0γ1γ3dtdxdz d2x = γ1γ3dxdz + cγ3γ0dzdt + cγ0γ1dtdx

d3x = cγ0γ2γ3dtdydz d2x = γ2γ3dydz + cγ3γ0dzdt + cγ0γ2dtdy

d3x = γ1γ2γ3dxdydz d2x = γ1γ2dxdy + γ2γ3dydz + cγ3γ1dzdx

Wedging the area element with F will produce pseudoscalar multiples of the various E and B
components, but a recipe for these components is required.

First note that for k 6= 0, the wedge γk ∧ γ0 ∧ F will just select components of B. This can be seen
first by simplifying

(1.27)

IB = γ0123Bmγm0

=


γ32B1 m = 1
γ13B2 m = 2
γ21B3 m = 3

,

or

(1.28)IB = −εabcγabBc.

From this it follows that

(1.29)γk ∧ γ0 ∧ F = IcBk.
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The electric field components are easier to pick out. Those are selected by

(1.30)γm ∧ γn ∧ F = γm ∧ γn ∧ γk ∧ γ0Ek

= −IEkεmnk.

The respective volume element wedge products with J are

(1.31)
1
I

d3x ∧ J =
1

cε0
J3 1

I
d3x ∧ J =

1
cε0

J2 1
I

d3x ∧ J =
1

cε0
J1,

and the respective sum of surface area elements wedged with the electromagnetic field are

(1.32)

1
I

d2x ∧ F = −E3∣∣
c∆tdxdy + c

(
B2∣∣

∆xdy − B1
∣∣∣
∆y

dx
)

dt

1
I

d2x ∧ F = E2∣∣
c∆tdxdz + c

(
B3∣∣

∆xdz − B1
∣∣∣
∆z

dx
)

dt

1
I

d2x ∧ F = −E1
∣∣∣
c∆t

dydz + c
(

B3∣∣
∆ydz − B2∣∣

∆zdy
)

dt

1
I

d2x ∧ F = −E3∣∣
∆zdydx − E2∣∣

∆ydxdz − E1
∣∣∣
∆x

dzdy,

so

(1.33)

∫
∂V
−E3∣∣

c∆tdxdy + c
(

B2∣∣
∆xdy − B1

∣∣∣
∆y

dx
)

dt = c
∫

V
dxdydt

1
cε0

J3

∫
∂V

E2∣∣
c∆tdxdz + c

(
B3∣∣

∆xdz − B1
∣∣∣
∆z

dx
)

dt = −c
∫

V
dxdydt

1
cε0

J2

∫
∂V
−E1

∣∣∣
c∆t

dydz + c
(

B3∣∣
∆ydz − B2∣∣

∆zdy
)

dt = c
∫

V
dxdydt

1
cε0

J1

∫
∂V
−E3∣∣

∆zdydx − E2∣∣
∆ydxdz − E1

∣∣∣
∆x

dzdy = −
∫

V
dxdydz

1
ε0

ρ.

Observe that if the volume elements are taken to their infinesimal limits, we recover the traditional
differential forms of the Ampere-Maxwell and Gauss’s law equations.
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