> Peeter Joot
> peeterjoot@ protonmail.com

Normal transmission and reflection through two interfaces

Motivation In class an outline of normal transmission through a slab was presented. Let's go through the details.

Normal incidence The geometry of a two interface configuration is sketched in fig. 1.1.

Figure 1.1: Two interface transmission.
Given a normal incident ray with magnitude A, the respective forward and backwards rays in each the mediums can be written as

I

$$
\begin{align*}
& A e^{-j k_{1 z} z} \\
& A r e^{j k_{1 z} z} \tag{1.1}
\end{align*}
$$

II

$$
\begin{array}{r}
C e^{-j k_{2 z} z} \tag{1.2}\\
D e^{j k_{2 z} z}
\end{array}
$$

III

$$
\begin{equation*}
A t e^{-j k_{z z}(z-d)} \tag{1.3}
\end{equation*}
$$

Matching at $z=0$ gives

$$
\begin{align*}
A t_{12}+r_{21} D & =C \tag{1.4}\\
A r & =A r_{12}+D t_{21},
\end{align*}
$$

whereas matching at $z=d$ gives

$$
\begin{align*}
A t & =C e^{-j k_{2 z} d^{d}} t_{23} \tag{1.5}\\
D e^{j k_{2 z} d} & =C e^{-j k_{2 z} d} r_{23}
\end{align*}
$$

We have four linear equations in four unknowns r, t, C, D, but only care about solving for r, t. Let's write $\gamma=e^{j k_{2 z} d}, C^{\prime}=C / A, D^{\prime}=D / A$, for

$$
\begin{align*}
t_{12}+r_{21} D^{\prime} & =C^{\prime} \\
r & =r_{12}+D^{\prime} t_{21} \\
t \gamma & =C^{\prime} t_{23} \tag{1.6}\\
D^{\prime} \gamma^{2} & =C^{\prime} r_{23}
\end{align*}
$$

Solving for C^{\prime}, D^{\prime} we get

$$
\begin{align*}
& D^{\prime}\left(\gamma^{2}-r_{21} r_{23}\right)=t_{12} r_{23} \\
& C^{\prime}\left(\gamma^{2}-r_{21} r_{23}\right)=t_{12} \gamma^{2} \tag{1.7}
\end{align*}
$$

so

$$
\begin{align*}
& r=r_{12}+\frac{t_{12} t_{21} r_{23}}{\gamma^{2}-r_{21} r_{23}} \\
& t=t_{23} \frac{t_{12} \gamma}{\gamma^{2}-r_{21} r_{23}} . \tag{1.8}
\end{align*}
$$

With $\phi=-j k_{2 z} d$, or $\gamma=e^{-j \phi}$, we have

$$
\begin{align*}
& r=r_{12}+\frac{t_{12} t_{21} r_{23} e^{2 j \phi}}{1-r_{21} r_{23} e^{2 j \phi}} \\
& t=\frac{t_{12} t_{23} e^{j \phi}}{1-r_{21} r_{23} e^{2 j \phi}} . \tag{1.9}
\end{align*}
$$

A slab When the materials in region I, and III are equal, then $r_{12}=r_{32}$. For a TE mode, we have

$$
\begin{equation*}
r_{12}=\frac{\mu_{2} k_{1 z}-\mu_{1} k_{2 z}}{\mu_{2} k_{1 z}+\mu_{1} k_{2 z}}=-r_{21} . \tag{1.10}
\end{equation*}
$$

so the reflection and transmission coefficients are

$$
\begin{align*}
& r^{\mathrm{TE}}=r_{12}\left(1-\frac{t_{12} t_{21} e^{2 j \phi}}{1-r_{21}^{2} e^{2 j \phi}}\right) \\
& t^{\mathrm{TE}}=\frac{t_{12} t_{21} e^{j \phi}}{1-r_{21}^{2} e^{2 j \phi}} . \tag{1.11}
\end{align*}
$$

It's possible to produce a matched condition for which $r_{12}=r_{21}=0$, by selecting

$$
\begin{align*}
0 & =\mu_{2} k_{1 z}-\mu_{1} k_{2 z} \\
& =\mu_{1} \mu_{2}\left(\frac{1}{\mu_{1}} k_{1 z}-\frac{1}{\mu_{2}} k_{2 z}\right) \tag{1.12}\\
& =\mu_{1} \mu_{2} \omega\left(\frac{1}{v_{1} \mu_{1}} \theta_{1}-\frac{1}{v_{2} \mu_{2}} \theta_{2}\right),
\end{align*}
$$

or

$$
\begin{equation*}
\frac{1}{\eta_{1}} \cos \theta_{1}=\frac{1}{\eta_{2}} \cos \theta_{2} \tag{1.13}
\end{equation*}
$$

so the matching condition for normal incidence is just

$$
\begin{equation*}
\eta_{1}=\eta_{2} . \tag{1.14}
\end{equation*}
$$

Given this matched condition, the transmission coefficient for the 1,2 interface is

$$
\begin{align*}
t_{12} & =\frac{2 \mu_{2} k_{1 z}}{\mu_{2} k_{1 z}+\mu_{1} k_{2 z}} \\
& =\frac{2 \mu_{2} k_{1 z}}{2 \mu_{2} k_{1 z}} \tag{1.15}\\
& =1,
\end{align*}
$$

so the matching condition yields

$$
\begin{align*}
t & =t_{12} t_{21} e^{j \phi} \\
& =e^{j \phi} \tag{1.16}\\
& =e^{-j k_{2 z} d} .
\end{align*}
$$

Normal transmission through a matched slab only introduces a phase delay.

