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ECE1236H Microwave and Millimeter-Wave Techniques: Transmission
lines. Taught by Prof. G.V. Eleftheriades

Disclaimer — Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course ECE1236H, Microwave and Millimeter-Wave Techniques,
taught by Prof. G.V. Eleftheriades, covering ch.2 [1] content.

1.1 Requirements
A transmission line requires two conductors as sketched in fig. 1.1, which shows a 2-wire line such

a telephone line, a coaxial cable as found in cable TV distribution, and a microstrip line as found in
cell phone RF interconnects.
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Figure 1.1: Transmission line examples.

A two-wire line becomes a transmission line when the wavelength of operation becomes compa-
rable to the size of the line (or higher spectral component for pulses). In general a transmission line
much support (TEM) transverse electromagnetic modes.

1.2 Time harmonic solutions on transmission lines

In fig. 1.2, an electronic representation of a transmission line circuit is sketched.
In this circuit all the elements have per-unit length units. With I = CdV /dt ~ jwCV, v = IR, and
V = Ldl/dt ~ jwLlI, the KVL equation is
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Figure 1.2: Transmission line equivalent circuit.

V(z) — V(z+ Az) = [(z2)Az (R + jwL),
or in the Az — 0 limit

WV

3, = —I(z) (R+jwL).

The KCL equation at the interior node is

—I(z) + I(z + Az) + (jwC + G) V(z + Az) =0,

or or
= = —V(2) (jwC +G) .

This pair of equations is known as the telegrapher’s equations

1% )
5 —I(z) (R +jwL)
ol .
Fr —V(z) (jwC+G).
The second derivatives are
%V ol )
52 = 5 (R+jwL)
921 aV .
@ = —g (]CIJC"'G),

which allow the V, I to be decoupled
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With a complex propagation constant
r=a+jp
= /(jwC +G) (R + jwL)

= \/RG — w2LC + juw(LG + RO),

the decouple equations have the structure of a wave equation for a lossy line in the frequency
domain

(1.8)
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We write the solutions to these equations as

V(z) = Vye 7+ Vye*
I(z) = Iye "> — Iy e™*

(1.10)
Only one of V or I is required since they are dependent through eq. (1.5), as can be seen by taking
derivatives
aV _ _
g = (—V0+€ vz + VO e+’yz) (111)
—I(z) (R+jwL),
SO
I(z) = Fe TP — Vet 1.12
@)= gyr (W™= Voe™) (112)
Introducing the characteristic impedance Zy of the line

R+ jwL
Zo = +jw
Y

(1.13)
_ |R+jwL
VG +jwC’
we have

1
I(z) = 7 (Voe™ 7% — Vy e™?)

(1.14)
=Ige 7F — Iy e,
where
s
0 Zo
" (1.15)
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1.3 Mapping TL geometry to per unit length C and L elements

{Example 1.1: Coaxial cable.}

From electrostatics and magnetostatics the per unit length induction and capacitance constants
for a co-axial cable can be calculated. For the cylindrical configuration sketched in fig. 1.3

Figure 1.3: Coaxial cable.

From Gauss’ law the total charge can be calculated assuming that the ends of the cable can be
neglected

Q=/V-DdV
:j{D-dA (1.16)

= epe,EQ27tr)l,
This provides the radial electric field magnitude, in terms of the total charge

__Q/

~ eoe,(27r)’ (1.17)

which must be a radial field as sketched in fig. 1.4.




Figure 1.4: Radial electric field for coaxial cable.

The potential difference from the inner transmission surface to the outer is

b
V= / ik
a
__Q/ /bdr (1.18)
2mweper Ja T

_ Qb
27wege, a

Therefore the capacitance per unit length is

C= QV/Z - 2712‘3%6?, (1.19)

The inductance per unit length can be calculated form Ampere’s law
d
/(VxH)-dS:/]-dS+g/D-/dT
=1

_ f H - dl (1.20)
= HQ27r)
= 50(27rr)

The flux is

@z/B-dA
_ kol [ 1

27T JAa ¥ (1 21)
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The inductance per unit length is
_9®/l _po, b
For alossless line where R = G = 0, we have v = /(jwL)(jwC) = jw+v/ LC, so the phase velocity
for a (lossless) coaxial cable is
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This gives
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So

1
Uy = ,
¢ €y

which is the speed of light in the medium (e,) that fills the co-axial cable.

This is not a coincidence. In any two-wire homogeneously filled transmission line, the phase
velocity is equal to the speed of light in the unbounded medium that fills the line.

The characteristic impedance (again assuming the lossless R = G = 0 case) is

(1.25)

7 KR+ jwL
7\ &+jwC
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Note that 7 = \/po/€0 = 120Q) is the intrinsic impedance of free space. The values a,b in
eg. (1.26) can be used to tune the characteristic impedance of the transmission line.




1.4 Lossless line.

The lossless lossless case where R = G = 0 was considered above. The results were
v =jwVLC,
soa = 0and g = wVLC, and the phase velocity was

1
Vp = —,
? - VIC

the characteristic impedance is

Zo =

4

O =

and the signals are ' ‘
V(z) = Vie 1P 4+ Vo’efﬁZ

1 ) ‘
= —jBz _ vy plBz
I(z) Ze (Voe Vy e )
In the time domain for an infinite line, we have
v(z,t) = Re (V(z)ej‘”t>
=V, Re (e*jﬁzej“’t>
= Vy cos(wt — Bz).

In this case the shape and amplitude of the waveform are preserved as sketched in fig. 1.5.
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Figure 1.5: Lossless line signal preservation.
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1.5 Low loss line.

Assume R < wL and G < wC. In this case we have

v = /(R +jwL)(G + jwC)

G
=jwVL \/1+]wL <1+ij>
. R G
, R G (1.32)
~ jwVLC (1 + 2l + 2]0‘1C>

= jwVLC + jw RyC/L GvL/C

2jw +jw 2jw

e (e 2)
. (R@ : G@ .

B =wVLC.

Observe that this value for § is the same as the lossless case to first order. We also have

SO

R+ jwL

r\./\/f
~ C,

also the same as the lossless case. We must also have vy = 1/v/LC. To consider a time domain
signal note that

Zy =

V(@) =Voe™ (1.35)
= Va—e_aze_jﬁz, )

=)
v(z, 1) = Re (V(z)ej“’t>
=Re <Vo+e_“ze_fﬁzej“’t) (1.36)
= Ve * cos(wt — Bz).

The phase factor can be written



wt — Bz =w (t— f}z)w(t—z/vq,), (1.37)

so the signal still moves with the phase velocity vy = 1/+/LC, but in a diminishing envelope as
sketched in fig. 1.6.
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Figure 1.6: Time domain envelope for loss loss line.

Notes
e The shape is preserved but the amplitude has an exponential attenuation along the line.

e In this case, since B(w) is a linear function to first order, we have no dispersion. All of the
Fourier components of a pulse travel with the same phase velocity since vy = w/f is constant.
ie. v(z,t) = e f(t —z/vy). We should expect dispersion when the R/wL and G/wC start
becoming more significant.

1.6 Distortionless line.

Motivated by the early telegraphy days, when low loss materials were not available. Therefore lines
with a constant attenuation and constant phase velocity (i.e. no dispersion) were required in order to
eliminate distortion of the signals. This can be achieved by setting

R G
R_G 1.
T=C (1.38)



When that is done we have

v =+v/(R + jwL)(G + jwC)

=]'w\/LC\/ 1+ L <1 + G)
jwC

R
-roviey (1) (1 5ar)
=jw L jowL (1.39)
=jwVL (1 + >
c .
= R\/: +jwV LC
=VRG + jwVLC.
We have
o =vVRG (1.40)
B =wVLC. '
The phase velocity is the same as that of the lossless and low-loss lines
w 1
Op = — = ———. 141
"7 VIc (4D
1.7 Terminated lossless line.
Consider the load configuration sketched in fig. 1.7.
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Figure 1.7: Terminated line.
Recall that
V(z) = Vﬂfz’]‘/BZ + Vo’e”ﬁZ
- (1.42)

Vv .
I Y0 ,—jBz _ "0 +jBz
(z) = e Z —e
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At the

So

where

load (z = 0), we have
V() =Vy+Vy
1 _
1(0) = Zo (VOJr -V )

_ V()
"7 I0)
Vo +Vy
Vo = Vo
1+ FL

=Zp— =,
T,

=7,

is the reflection coefficient at the load.
The phasors for the signals take the form

Observe that we can rearranging for I'y, in terms of the impedances

or

or

Power

V(z) =Vy (e‘jﬁz + I"Le+jﬁz>
+

v ‘ ‘
I(z) = Z—?) (e_fﬁz — l"Le”ﬁZ) .

1+FL

(1-TuZL=2

7

I'u(Zo+Z1) =2y — Zo,

2L — 2y

I'n = .
L Zo+ZL

The average (time) power on the line is

P = 3 Re(V(2)I'(2)

|V(;—|2 2jpz * ,—2jBz 2
25, Re (1+rLe —Tie ¥ Iy )
Vi ® 2

= 1—m?).
27, < T )
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IRe <v0+ GEs <‘;00> (e r;efﬁz)>

(1.43)
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where we’ve made use of the fact that Zy = /L/C is real for the lossless line, and the fact that a
conjugate difference A — A* = 2jIm(A) is purely imaginary.
This can be written as

Py =Pt — P, (1.51)
where
2
e 15
2Z02 (1.52)
+
P+ — |VO ’ ’Fsz
279 '

This difference is the power delivered to the load. This is not z-dependent because we are consid-

ering the lossless case. Maximum power is delivered to the load when I'y, = 0, which occurs when
the impedances are matched.

1.8 Return loss and insertion loss. Defined.

Return loss (dB) is defined as

P

RL = 101log,, %
refl

1 (1.53)

rf?
= —20log,, |T|.

=10log,,

Insertion loss (dB) is defined as

P
IL = 10log;,, ﬁ
+

=10 logm ﬁ

(1.54)
=10log;y ——
810 1- 1]
2
= —10log,, (1 —r| ) .
1.9 Standing wave ratio
Consider again the lossless loaded configuration of fig. 1.7. Now let z = —I, where [ is the distance

from the load. The phasors at this point on the line are

12



V(-l) =V (efﬁl + rLe*fﬁl)

Vo, . (1.55)
I(—-1) = Z—(; (efﬁl — FLe’]ﬁl)
The absolute voltage at this point is
\V(=D)| = |V§]||e/ + Tpe ! ‘
= V¢ ’1 + rLe—Zfﬁ’) (1.56)
= V| ]1 + \rLyeJ'@Le-zfﬁ’),
where the complex valued T is given by Ty = [Ty |e/OL.
This gives
V(=D = |ViF|[1+ T [e/©@L26). (157)
The voltage magnitude oscillates as one moves along the line. The maximum occurs when /@1 =26) =
1
Vimax = [Vo'[|1+|TL||- (1.58)
This occurs when @1 — 2! = 2kt fork=0,1,2, - - -. The minimum occurs when eOL—=28) — _q
Vinin = [Vi'[[1 = [T, (1.59)

which occurs when @1, — 28l = 2k — 1)t for k=1, 2, - - -. The standing wave ratio is defined as

Viax _ 1+ Ty

SWR = = .
Vmin 1— |FL|

(1.60)

This is a measure of the mismatch of a line. This is sketched in fig. 1.8.
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Figure 1.8: SWR extremes.
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e Since 0 < |I'L| <1, we have 1 < SWR < co. The lower bound is for a matched line, and open,
short, or purely reactive termination leads to the infinities.

e The distance between two successive maxima (or minima) can be determined by setting @, —
2Bl = 2k for two consecutive values of k. For k = 0, suppose that Vinax occurs at d;

@L — Zﬁdl = 2(0)7‘[, (1.61)

or

dl_ﬁ.

(1.62)

For k = 1, let the max occur at dp
@L - Zﬁdz = 2(1)7‘(, (163)

or
_ @L — 27

dy 26

(1.64)

The difference is

@L @L—ZTC
d—dy= p — —
2p 2
7T

B (1.65)

R
S 2m/A
A

5
The distance between two consecutive maxima (or minima) of the SWRis A /2.

1.10 Impedance Transformation.

Referring to fig. 1.9, let’s solve for the impedance at the load where z = 0 and at z = — 1.
At any point on the line we have

V(z) = Vie I (1 + rLerﬁZ) ) (1.66)
so at the load and input we have

VL = V(;— <1+FL)

V(=I)=V*" (1+TL(-1)), (1.67)

14
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Figure 1.9: Configuration for impedance transformation.

where
[L(—1) = Tpe 2#
Similarly
V+
I(-]) = 5 (1= Tu(=D).
0
Define an input impedance as
_ V(=D
Zin = I(—=1)
_ 1+ FL(—l)
ST
This is analogous to
1+ FL
71, = ZOl T,

From eq. (1.49), we have

g =y Lot 2+ (2= Zg)e P
T Zo+ 2L — (2 — Zo)e
7 (Zo+ Z1) Pl 4 (Zy, — Zyp) e P
(Zo+ Z0) el — (21, — Zp) e IP!
_y 7y, cos(Bl) + jZo sin(Bl)
0Zo cos(Bl) + jZy, sin(Bl)’

or

o 71+ jZ() tan(ﬁl)
me Zo + jZy, tan(Bl) ’

(1.68)

(1.69)

(1.70)

(1.71)

(1.72)

(1.73)

This can be thought of as providing a reflection coefficient function along the line to the load at any

point as sketched in fig. 1.10.

15



;Zo ’2’
,ZN 1_': 2
e A

L b
Z’l£5 ZL
—— —>J
‘:/3\ 3=

Figure 1.10: Impedance transformation reflection on the line.
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