Peeter Joot
 peeterjoot@protonmail.com

ECE1236H Microwave and Millimeter-Wave Techniques: Transmission lines. Taught by Prof. G.V. Eleftheriades

Disclaimer Peeter's lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course ECE1236H, Microwave and Millimeter-Wave Techniques, taught by Prof. G.V. Eleftheriades, covering ch. 2 [1] content.

1.1 Requirements

A transmission line requires two conductors as sketched in fig. 1.1, which shows a 2 -wire line such a telephone line, a coaxial cable as found in cable TV distribution, and a microstrip line as found in cell phone RF interconnects.

Figure 1.1: Transmission line examples.
A two-wire line becomes a transmission line when the wavelength of operation becomes comparable to the size of the line (or higher spectral component for pulses). In general a transmission line much support (TEM) transverse electromagnetic modes.

1.2 Time harmonic solutions on transmission lines

In fig. 1.2, an electronic representation of a transmission line circuit is sketched.
In this circuit all the elements have per-unit length units. With $I=C d V / d t \sim j \omega C V, v=I R$, and $V=L d I / d t \sim j \omega L I$, the KVL equation is

Figure 1.2: Transmission line equivalent circuit.

$$
\begin{equation*}
V(z)-V(z+\Delta z)=I(z) \Delta z(R+j \omega L), \tag{1.1}
\end{equation*}
$$

or in the $\Delta z \rightarrow 0$ limit

$$
\begin{equation*}
\frac{\partial V}{\partial z}=-I(z)(R+j \omega L) . \tag{1.2}
\end{equation*}
$$

The KCL equation at the interior node is

$$
\begin{equation*}
-I(z)+I(z+\Delta z)+(j \omega C+G) V(z+\Delta z)=0 \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial I}{\partial z}=-V(z)(j \omega C+G) \tag{1.4}
\end{equation*}
$$

This pair of equations is known as the telegrapher's equations

$$
\begin{align*}
& \frac{\partial V}{\partial z}=-I(z)(R+j \omega L) \tag{1.5}\\
& \frac{\partial I}{\partial z}=-V(z)(j \omega C+G) .
\end{align*}
$$

The second derivatives are

$$
\begin{align*}
& \frac{\partial^{2} V}{\partial z^{2}}=-\frac{\partial I}{\partial z}(R+j \omega L) \tag{1.6}\\
& \frac{\partial^{2} I}{\partial z^{2}}=-\frac{\partial V}{\partial z}(j \omega C+G),
\end{align*}
$$

which allow the V, I to be decoupled

$$
\begin{align*}
& \frac{\partial^{2} V}{\partial z^{2}}=V(z)(j \omega C+G)(R+j \omega L) \\
& \frac{\partial^{2} I}{\partial z^{2}}=I(z)(R+j \omega L)(j \omega C+G), \tag{1.7}
\end{align*}
$$

With a complex propagation constant

$$
\begin{align*}
\gamma & =\alpha+j \beta \\
& =\sqrt{(j \omega C+G)(R+j \omega L)} \tag{1.8}\\
& =\sqrt{R G-\omega^{2} L C+j \omega(L G+R C)},
\end{align*}
$$

the decouple equations have the structure of a wave equation for a lossy line in the frequency domain

$$
\begin{align*}
& \frac{\partial^{2} V}{\partial z^{2}}-\gamma^{2} V=0 \tag{1.9}\\
& \frac{\partial^{2} I}{\partial z^{2}}-\gamma^{2} I=0
\end{align*}
$$

We write the solutions to these equations as

$$
\begin{align*}
V(z) & =V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{+\gamma z} \\
I(z) & =I_{0}^{+} e^{-\gamma z}-I_{0}^{-} e^{+\gamma z} \tag{1.10}
\end{align*}
$$

Only one of V or I is required since they are dependent through eq. (1.5), as can be seen by taking derivatives

$$
\begin{align*}
\frac{\partial V}{\partial z} & =\gamma\left(-V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{+\gamma z}\right) \tag{1.11}\\
& =-I(z)(R+j \omega L),
\end{align*}
$$

so

$$
\begin{equation*}
I(z)=\frac{\gamma}{R+j \omega L}\left(V_{0}^{+} e^{-\gamma z}-V_{0}^{-} e^{+\gamma z}\right) . \tag{1.12}
\end{equation*}
$$

Introducing the characteristic impedance Z_{0} of the line

$$
\begin{align*}
Z_{0} & =\frac{R+j \omega L}{\gamma} \\
& =\sqrt{\frac{R+j \omega L}{G+j \omega C}} \tag{1.13}
\end{align*}
$$

we have

$$
\begin{align*}
I(z) & =\frac{1}{Z_{0}}\left(V_{0}^{+} e^{-\gamma z}-V_{0}^{-} e^{+\gamma z}\right) \tag{1.14}\\
& =I_{0}^{+} e^{-\gamma z}-I_{0}^{-} e^{+\gamma z},
\end{align*}
$$

where

$$
\begin{align*}
& I_{0}^{+}=\frac{V_{0}^{+}}{Z_{0}} \\
& I_{0}^{-}=\frac{V_{0}^{-}}{Z_{0}} . \tag{1.15}
\end{align*}
$$

1.3 Mapping TL geometry to per unit length C and L elements

Example 1.1: Coaxial cable.

From electrostatics and magnetostatics the per unit length induction and capacitance constants for a co-axial cable can be calculated. For the cylindrical configuration sketched in fig. 1.3

Figure 1.3: Coaxial cable.
From Gauss' law the total charge can be calculated assuming that the ends of the cable can be neglected

$$
\begin{align*}
Q & =\int \boldsymbol{\nabla} \cdot \mathbf{D} d V \\
& =\oint \mathbf{D} \cdot d \mathbf{A} \tag{1.16}\\
& =\epsilon_{0} \epsilon_{r} E(2 \pi r) l,
\end{align*}
$$

This provides the radial electric field magnitude, in terms of the total charge

$$
\begin{equation*}
E=\frac{Q / l}{\epsilon_{0} \epsilon_{r}(2 \pi r)^{\prime}}, \tag{1.17}
\end{equation*}
$$

which must be a radial field as sketched in fig. 1.4.

Figure 1.4: Radial electric field for coaxial cable.
The potential difference from the inner transmission surface to the outer is

$$
\begin{align*}
V & =\int_{a}^{b} E d r \\
& =\frac{Q / l}{2 \pi \epsilon_{0} \epsilon_{r}} \int_{a}^{b} \frac{d r}{r} \tag{1.18}\\
& =\frac{Q / l}{2 \pi \epsilon_{0} \epsilon_{r}} \ln \frac{b}{a} .
\end{align*}
$$

Therefore the capacitance per unit length is

$$
\begin{equation*}
C=\frac{Q / l}{V}=\frac{2 \pi \epsilon_{0} \epsilon_{r}}{\ln \frac{b}{a}} . \tag{1.19}
\end{equation*}
$$

The inductance per unit length can be calculated form Ampere's law

$$
\begin{align*}
\int(\boldsymbol{\nabla} \times \mathbf{H}) \cdot d \mathbf{S} & =\int \mathbf{J} \cdot d \mathbf{S}+\frac{\partial}{\partial t} \int \mathbf{D} \cdot d \mathbf{I} \\
& =I \\
& =\oint \mathbf{H} \cdot d \mathbf{l} \tag{1.20}\\
& =H(2 \pi r) \\
& =\frac{B}{\mu_{0}}(2 \pi r)
\end{align*}
$$

The flux is

$$
\begin{align*}
\Phi & =\int \mathbf{B} \cdot d \mathbf{A} \\
& =\frac{\mu_{0} I}{2 \pi} \int_{A} \frac{1}{r} d d r \tag{1.21}\\
& =\frac{\mu_{0} I}{2 \pi} \int_{a}^{b} \frac{1}{r} l d d r \\
& =\frac{\mu_{0} I l}{2 \pi} \ln \frac{b}{a} .
\end{align*}
$$

The inductance per unit length is

$$
\begin{equation*}
L=\frac{\Phi / l}{I}=\frac{\mu_{0}}{2 \pi} \ln \frac{b}{a} . \tag{1.22}
\end{equation*}
$$

For a lossless line where $R=G=0$, we have $\gamma=\sqrt{(j \omega L)(j \omega C)}=j \omega \sqrt{L C}$, so the phase velocity for a (lossless) coaxial cable is

$$
\begin{align*}
v_{\phi} & =\frac{\omega}{\beta} \\
& =\frac{\omega}{\operatorname{Im}(\gamma)} \\
& =\frac{\omega}{\omega \sqrt{L C})} \tag{1.23}\\
& =\frac{1}{\sqrt{L C})} .
\end{align*}
$$

This gives

$$
\begin{align*}
v_{\phi}^{2} & =\frac{1}{L} \frac{1}{C} \\
& =\frac{2 \pi}{\mu_{0} \ln \frac{b}{a}} \frac{\ln \frac{b}{a}}{2 \pi \epsilon_{0} \epsilon_{r}} \tag{1.24}\\
& =\frac{1}{\mu_{0} \epsilon_{0} \epsilon_{r}} \\
& =\frac{1}{\mu_{0} \epsilon} .
\end{align*}
$$

So

$$
\begin{equation*}
v_{\phi}=\frac{1}{\sqrt{\epsilon \mu_{0}}} \tag{1.25}
\end{equation*}
$$

which is the speed of light in the medium $\left(\epsilon_{r}\right)$ that fills the co-axial cable.
This is not a coincidence. In any two-wire homogeneously filled transmission line, the phase velocity is equal to the speed of light in the unbounded medium that fills the line.

The characteristic impedance (again assuming the lossless $R=G=0$ case) is

$$
\begin{align*}
Z_{0} & =\sqrt{\frac{R+j \omega L}{\zeta+j \omega C}} \\
& =\sqrt{\frac{L}{C}} \tag{1.26}\\
& =\sqrt{\frac{\mu_{0}}{2 \pi} \ln \frac{b}{a} \frac{\ln \frac{b}{a}}{2 \pi \epsilon_{0} \epsilon_{r}}} \\
& =\sqrt{\frac{\mu_{0}}{\epsilon}} \frac{\ln \frac{b}{a}}{2 \pi} .
\end{align*}
$$

Note that $\eta=\sqrt{\mu_{0} / \epsilon_{0}}=120 \pi \Omega$ is the intrinsic impedance of free space. The values a, b in eq. (1.26) can be used to tune the characteristic impedance of the transmission line.

1.4 Lossless line.

The lossless lossless case where $R=G=0$ was considered above. The results were

$$
\begin{equation*}
\gamma=j \omega \sqrt{L C} \tag{1.27}
\end{equation*}
$$

so $\alpha=0$ and $\beta=\omega \sqrt{L C}$, and the phase velocity was

$$
\begin{equation*}
v_{\phi}=\frac{1}{\sqrt{L C}} \tag{1.28}
\end{equation*}
$$

the characteristic impedance is

$$
\begin{equation*}
Z_{0}=\sqrt{\frac{L}{C}} \tag{1.29}
\end{equation*}
$$

and the signals are

$$
\begin{align*}
V(z) & =V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{j \beta z} \\
I(z) & =\frac{1}{Z_{0}}\left(V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{j \beta z}\right) \tag{1.30}
\end{align*}
$$

In the time domain for an infinite line, we have

$$
\begin{align*}
v(z, t) & =\operatorname{Re}\left(V(z) e^{j \omega t}\right) \\
& =V_{0}^{+} \operatorname{Re}\left(e^{-j \beta z} e^{j \omega t}\right) \tag{1.31}\\
& =V_{0}^{+} \cos (\omega t-\beta z)
\end{align*}
$$

In this case the shape and amplitude of the waveform are preserved as sketched in fig. 1.5.

Figure 1.5: Lossless line signal preservation.

1.5 Low loss line.

Assume $R \ll \omega L$ and $G \ll \omega C$. In this case we have

$$
\begin{align*}
\gamma & =\sqrt{(R+j \omega L)(G+j \omega C)} \\
& =j \omega \sqrt{L C} \sqrt{\left(1+\frac{R}{j \omega L}\right)\left(1+\frac{G}{j \omega C}\right)} \\
& \approx j \omega \sqrt{L C}\left(1+\frac{R}{2 j \omega L}\right)\left(1+\frac{G}{2 j \omega C}\right) \\
& \approx j \omega \sqrt{L C}\left(1+\frac{R}{2 j \omega L}+\frac{G}{2 j \omega C}\right) \tag{1.3}\\
& =j \omega \sqrt{L C}+j \omega \frac{R \sqrt{C / L}}{2 j \omega}+j \omega \frac{G \sqrt{L / C}}{2 j \omega} \\
& =j \omega \sqrt{L C}+\frac{1}{2}\left(R \sqrt{\frac{C}{L}}+G \sqrt{\frac{L}{C}}\right),
\end{align*}
$$

so

$$
\begin{align*}
& \alpha=\frac{1}{2}\left(R \sqrt{\frac{C}{L}}+G \sqrt{\frac{L}{C}}\right) \tag{1.33}\\
& \beta=\omega \sqrt{L C} .
\end{align*}
$$

Observe that this value for β is the same as the lossless case to first order. We also have

$$
\begin{align*}
Z_{0} & =\sqrt{\frac{R+j \omega L}{G+j \omega C}} \tag{1.3}\\
& \approx \sqrt{\frac{L}{C}}
\end{align*}
$$

also the same as the lossless case. We must also have $v_{\phi}=1 / \sqrt{L C}$. To consider a time domain signal note that

$$
\begin{align*}
V(z) & =V_{0}^{+} e^{-\gamma z} \tag{1.35}\\
& =V_{0}^{+} e^{-\alpha z} e^{-j \beta z},
\end{align*}
$$

so

$$
\begin{align*}
v(z, t) & =\operatorname{Re}\left(V(z) e^{j \omega t}\right) \\
& =\operatorname{Re}\left(V_{0}^{+} e^{-\alpha z} e^{-j \beta z} e^{j \omega t}\right) \tag{1.36}\\
& =V_{0}^{+} e^{-\alpha z} \cos (\omega t-\beta z) .
\end{align*}
$$

The phase factor can be written

$$
\begin{equation*}
\omega t-\beta z=\omega\left(t-\frac{\beta}{\omega} z\right) \omega\left(t-z / v_{\phi}\right) \tag{1.37}
\end{equation*}
$$

so the signal still moves with the phase velocity $v_{\phi}=1 / \sqrt{L C}$, but in a diminishing envelope as sketched in fig. 1.6.

Figure 1.6: Time domain envelope for loss loss line.
Notes

- The shape is preserved but the amplitude has an exponential attenuation along the line.
- In this case, since $\beta(\omega)$ is a linear function to first order, we have no dispersion. All of the Fourier components of a pulse travel with the same phase velocity since $v_{\phi}=\omega / \beta$ is constant. i.e. $v(z, t)=e^{-\alpha z} f\left(t-z / v_{\phi}\right)$. We should expect dispersion when the $R / \omega L$ and $G / \omega C$ start becoming more significant.

1.6 Distortionless line.

Motivated by the early telegraphy days, when low loss materials were not available. Therefore lines with a constant attenuation and constant phase velocity (i.e. no dispersion) were required in order to eliminate distortion of the signals. This can be achieved by setting

$$
\begin{equation*}
\frac{R}{L}=\frac{G}{C} . \tag{1.38}
\end{equation*}
$$

When that is done we have

$$
\begin{align*}
\gamma & =\sqrt{(R+j \omega L)(G+j \omega C)} \\
& =j \omega \sqrt{L C} \sqrt{\left(1+\frac{R}{j \omega L}\right)\left(1+\frac{G}{j \omega C}\right)} \\
& =j \omega \sqrt{L C} \sqrt{\left(1+\frac{R}{j \omega L}\right)\left(1+\frac{R}{j \omega L}\right)} \tag{1.39}\\
& =j \omega \sqrt{L C}\left(1+\frac{R}{j \omega L}\right) \\
& =R \sqrt{\frac{C}{L}}+j \omega \sqrt{L C} \\
& =\sqrt{R G}+j \omega \sqrt{L C} .
\end{align*}
$$

We have

$$
\begin{align*}
& \alpha=\sqrt{R G} \\
& \beta=\omega \sqrt{L C .} . \tag{1.40}
\end{align*}
$$

The phase velocity is the same as that of the lossless and low-loss lines

$$
\begin{equation*}
v_{\phi}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}} . \tag{1.41}
\end{equation*}
$$

1.7 Terminated lossless line.

Consider the load configuration sketched in fig. 1.7.

Figure 1.7: Terminated line.
Recall that

$$
\begin{align*}
V(z) & =V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{+j \beta z} \\
I(z) & =\frac{V_{0}^{+}}{Z_{0}} e^{-j \beta z}-\frac{V_{0}^{-}}{Z_{0}} e^{+j \beta z} \tag{1.42}
\end{align*}
$$

At the load $(z=0)$, we have

$$
\begin{align*}
V(0) & =V_{0}^{+}+V_{0}^{-} \\
I(0) & =\frac{1}{Z_{0}}\left(V_{0}^{+}-V_{0}^{-}\right) \tag{1.43}
\end{align*}
$$

So

$$
\begin{align*}
\mathrm{Z}_{\mathrm{L}} & =\frac{V(0)}{I(0)} \\
& =\mathrm{Z}_{0} \frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}} \tag{1.44}\\
& =\mathrm{Z}_{0} \frac{1+\Gamma_{\mathrm{L}}}{1-\Gamma_{\mathrm{L}}}
\end{align*}
$$

where

$$
\begin{equation*}
\Gamma_{\mathrm{L}} \equiv \frac{V_{0}^{-}}{V_{0}^{+}}, \tag{1.45}
\end{equation*}
$$

is the reflection coefficient at the load.
The phasors for the signals take the form

$$
\begin{align*}
V(z) & =V_{0}^{+}\left(e^{-j \beta z}+\Gamma_{\mathrm{L}} e^{+j \beta z}\right) \\
I(z) & =\frac{V_{0}^{+}}{Z_{0}}\left(e^{-j \beta z}-\Gamma_{\mathrm{L}} e^{+j \beta z}\right) . \tag{1.46}
\end{align*}
$$

Observe that we can rearranging for Γ_{L} in terms of the impedances

$$
\begin{equation*}
\left(1-\Gamma_{\mathrm{L}}\right) Z_{\mathrm{L}}=Z_{0} \frac{1+\Gamma_{\mathrm{L}}}{,} \tag{1.47}
\end{equation*}
$$

or

$$
\begin{equation*}
\Gamma_{\mathrm{L}}\left(\mathrm{Z}_{0}+\mathrm{Z}_{\mathrm{L}}\right)=\mathrm{Z}_{\mathrm{L}}-\mathrm{Z}_{0} \tag{1.48}
\end{equation*}
$$

or

$$
\begin{equation*}
\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{0}+Z_{L}} \tag{1.49}
\end{equation*}
$$

Power The average (time) power on the line is

$$
\begin{align*}
P_{\mathrm{av}} & =\frac{1}{2} \operatorname{Re}\left(V(Z) I^{*}(z)\right) \\
& =\frac{1}{2} \operatorname{Re}\left(V_{0}^{+}\left(e^{-j \beta z}+\Gamma_{\mathrm{L}} e^{+j \beta z}\right)\left(\frac{V_{0}^{+}}{Z_{0}}\right)^{*}\left(e^{j \beta z}-\Gamma_{\mathrm{L}}^{*} e^{-j \beta z}\right)\right) \tag{1.50}\\
& =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}} \operatorname{Re}\left(1+\Gamma_{\mathrm{L}} e^{2 j \beta z}-\Gamma_{\mathrm{L}}^{*} e^{-2 j \beta z}-\left|\Gamma_{\mathrm{L}}\right|^{2}\right) \\
& =\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{\mathrm{L}}\right|^{2}\right) .
\end{align*}
$$

where we've made use of the fact that $Z_{0}=\sqrt{L / C}$ is real for the lossless line, and the fact that a conjugate difference $A-A^{*}=2 j \operatorname{Im}(A)$ is purely imaginary.

This can be written as

$$
\begin{equation*}
P_{\mathrm{av}}=P^{+}-P^{-} \tag{1.51}
\end{equation*}
$$

where

$$
\begin{align*}
& P^{+}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}} \tag{1.52}\\
& P^{+}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left|\Gamma_{\mathrm{L}}\right|^{2} .
\end{align*}
$$

This difference is the power delivered to the load. This is not z-dependent because we are considering the lossless case. Maximum power is delivered to the load when $\Gamma_{\mathrm{L}}=0$, which occurs when the impedances are matched.
1.8 Return loss and insertion loss. Defined.

Return loss (dB) is defined as

$$
\begin{align*}
\text { RL } & =10 \log _{10} \frac{P_{\text {inc }}}{P_{\text {refl }}} \\
& =10 \log _{10} \frac{1}{|\Gamma|^{2}} \tag{1.53}\\
& =-20 \log _{10}|\Gamma| .
\end{align*}
$$

Insertion loss (dB) is defined as

$$
\begin{align*}
\mathrm{IL} & =10 \log _{10} \frac{P_{\text {inc }}}{P_{\text {trans }}} \\
& =10 \log _{10} \frac{P^{+}}{P^{+}-P^{-}} \tag{1.54}\\
& =10 \log _{10} \frac{1}{1-|\Gamma|^{2}} \\
& =-10 \log _{10}\left(1-|\Gamma|^{2}\right) .
\end{align*}
$$

1.9 Standing wave ratio

Consider again the lossless loaded configuration of fig. 1.7. Now let $z=-l$, where l is the distance from the load. The phasors at this point on the line are

$$
\begin{align*}
V(-l) & =V_{0}^{+}\left(e^{j \beta l}+\Gamma_{\mathrm{L}} e^{-j \beta l}\right) \\
I(-l) & =\frac{V_{0}^{+}}{Z_{0}}\left(e^{j \beta l}-\Gamma_{\mathrm{L}} e^{-j \beta l}\right) \tag{1.55}
\end{align*}
$$

The absolute voltage at this point is

$$
\begin{align*}
|V(-l)| & =\left|V_{0}^{+}\right|\left|e^{j \beta l}+\Gamma_{\mathrm{L}} e^{-j \beta l}\right| \\
& =\left|V_{0}^{+}\right|\left|1+\Gamma_{\mathrm{L}} e^{-2 j \beta l}\right| \tag{1.56}\\
& =\left|V_{0}^{+}\right|\left|1+\left|\Gamma_{\mathrm{L}}\right| e^{j \Theta_{\mathrm{L}}} e^{-2 j \beta l}\right|,
\end{align*}
$$

where the complex valued Γ_{L} is given by $\Gamma_{\mathrm{L}}=\left|\Gamma_{\mathrm{L}}\right| e^{j \theta_{\mathrm{L}}}$.
This gives

$$
\begin{equation*}
|V(-l)|=\left|V_{0}^{+}\right|\left|1+\left|\Gamma_{\mathrm{L}}\right| e^{j\left(\Theta_{\mathrm{L}}-2 \beta l\right)}\right| . \tag{1.57}
\end{equation*}
$$

The voltage magnitude oscillates as one moves along the line. The maximum occurs when $e^{j\left(\Theta_{\mathrm{L}}-2 \beta l\right)}=$ 1

$$
\begin{equation*}
V_{\max }=\left|V_{0}^{+}\right|\left|1+\left|\Gamma_{\mathrm{L}}\right|\right| . \tag{1.58}
\end{equation*}
$$

This occurs when $\Theta_{\mathrm{L}}-2 \beta l=2 k \pi$ for $k=0,1,2, \cdots$. The minimum occurs when $e^{j\left(\Theta_{\mathrm{L}}-2 \beta l\right)}=-1$

$$
\begin{equation*}
V_{\min }=\left|V_{0}^{+}\right|\left|1-\left|\Gamma_{\mathrm{L}}\right|\right|, \tag{1.59}
\end{equation*}
$$

which occurs when $\Theta_{\mathrm{L}}-2 \beta l=(2 k-1) \pi$ for $k=1,2, \cdots$. The standing wave ratio is defined as

$$
\begin{equation*}
\mathrm{SWR}=\frac{V_{\max }}{V_{\min }}=\frac{1+\left|\Gamma_{\mathrm{L}}\right|}{1-\left|\Gamma_{\mathrm{L}}\right|} . \tag{1.60}
\end{equation*}
$$

This is a measure of the mismatch of a line. This is sketched in fig. 1.8.

Figure 1.8: SWR extremes.
Notes:

- Since $0 \leq\left|\Gamma_{\mathrm{L}}\right| \leq 1$, we have $1 \leq \mathrm{SWR} \leq \infty$. The lower bound is for a matched line, and open, short, or purely reactive termination leads to the infinities.
- The distance between two successive maxima (or minima) can be determined by setting $\Theta_{\mathrm{L}}-$ $2 \beta l=2 k \pi$ for two consecutive values of k. For $k=0$, suppose that $V_{\max }$ occurs at d_{1}

$$
\begin{equation*}
\Theta_{\mathrm{L}}-2 \beta d_{1}=2(0) \pi, \tag{1.61}
\end{equation*}
$$

or

$$
\begin{equation*}
d_{1}=\frac{\Theta_{\mathrm{L}}}{2 \beta} . \tag{1.62}
\end{equation*}
$$

For $k=1$, let the max occur at d_{2}

$$
\begin{equation*}
\Theta_{\mathrm{L}}-2 \beta d_{2}=2(1) \pi, \tag{1.63}
\end{equation*}
$$

or

$$
\begin{equation*}
d_{2}=\frac{\Theta_{\mathrm{L}}-2 \pi}{2 \beta} \tag{1.64}
\end{equation*}
$$

The difference is

$$
\begin{align*}
d_{1}-d_{2} & =\frac{\Theta_{\mathrm{L}}}{2 \beta}-\frac{\Theta_{\mathrm{L}}-2 \pi}{2 \beta} \\
& =\frac{\pi}{\beta} \tag{1.65}\\
& =\frac{\pi}{2 \pi / \lambda} \\
& =\frac{\lambda}{2} .
\end{align*}
$$

The distance between two consecutive maxima (or minima) of the SWR is $\lambda / 2$.

1.10 Impedance Transformation.

Referring to fig. 1.9, let's solve for the impedance at the load where $z=0$ and at $z=-l$.
At any point on the line we have

$$
\begin{equation*}
V(z)=V_{0}^{+} e^{-j \beta z}\left(1+\Gamma_{\mathrm{L}} e^{2 j \beta z}\right), \tag{1.66}
\end{equation*}
$$

so at the load and input we have

$$
\begin{align*}
V_{\mathrm{L}} & =V_{0}^{+}\left(1+\Gamma_{\mathrm{L}}\right) \\
V(-l) & =V^{+}\left(1+\Gamma_{\mathrm{L}}(-1)\right), \tag{1.67}
\end{align*}
$$

Figure 1.9: Configuration for impedance transformation.
where

$$
\begin{align*}
V^{+} & =V_{0}^{+} e^{j \beta l} \\
\Gamma_{\mathrm{L}}(-1) & =\Gamma_{\mathrm{L}} e^{-2 j \beta l} \tag{1.68}
\end{align*}
$$

Similarly

$$
\begin{equation*}
I(-l)=\frac{V^{+}}{Z_{0}}\left(1-\Gamma_{\mathrm{L}}(-1)\right) . \tag{1.69}
\end{equation*}
$$

Define an input impedance as

$$
\begin{align*}
Z_{\text {in }} & =\frac{V(-l)}{I(-l)} \tag{1.70}\\
& =Z_{0} \frac{1+\Gamma_{\mathrm{L}}(-1)}{1-\Gamma_{\mathrm{L}}(-1)}
\end{align*}
$$

This is analogous to

$$
\begin{equation*}
Z_{L}=Z_{0} \frac{1+\Gamma_{L}}{1-\Gamma_{L}} \tag{1.71}
\end{equation*}
$$

From eq. (1.49), we have

$$
\begin{aligned}
Z_{\text {in }} & =Z_{0} \frac{Z_{0}+Z_{\mathrm{L}}+\left(Z_{\mathrm{L}}-Z_{0}\right) e^{-2 j \beta l}}{Z_{0}+Z_{\mathrm{L}}-\left(Z_{\mathrm{L}}-Z_{0}\right) e^{-2 j \beta l}} \\
& =Z_{0} \frac{\left(Z_{0}+Z_{\mathrm{L}}\right) e^{j \beta l}+\left(Z_{\mathrm{L}}-Z_{0}\right) e^{-j \beta l}}{\left(Z_{0}+Z_{\mathrm{L}}\right) e^{j \beta l}-\left(Z_{\mathrm{L}}-Z_{0}\right) e^{-j \beta l}} \\
& =Z_{0} \frac{Z_{\mathrm{L}} \cos (\beta l)+j \mathrm{Z}_{0} \sin (\beta l)}{Z_{0} \cos (\beta l)+j Z_{\mathrm{L}} \sin (\beta l)^{\prime}}
\end{aligned}
$$

or

$$
\begin{equation*}
Z_{\text {in }}=\frac{Z_{L}+j Z_{0} \tan (\beta l)}{Z_{0}+j Z_{\mathrm{L}} \tan (\beta l)} \tag{1.73}
\end{equation*}
$$

This can be thought of as providing a reflection coefficient function along the line to the load at any point as sketched in fig. 1.10.

Figure 1.10: Impedance transformation reflection on the line.

Bibliography

[1] David M Pozar. Microwave engineering. John Wiley \& Sons, 2009. 1

