
Peeter Joot
peeterjoot@protonmail.com

ECE1236H Microwave and Millimeter-Wave Techniques: Transmission
lines. Taught by Prof. G.V. Eleftheriades

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course ECE1236H, Microwave and Millimeter-Wave Techniques,

taught by Prof. G.V. Eleftheriades, covering ch. 2 [1] content.

1.1 Requirements

A transmission line requires two conductors as sketched in fig. 1.1, which shows a 2-wire line such
a telephone line, a coaxial cable as found in cable TV distribution, and a microstrip line as found in
cell phone RF interconnects.

Figure 1.1: Transmission line examples.

A two-wire line becomes a transmission line when the wavelength of operation becomes compa-
rable to the size of the line (or higher spectral component for pulses). In general a transmission line
much support (TEM) transverse electromagnetic modes.

1.2 Time harmonic solutions on transmission lines

In fig. 1.2, an electronic representation of a transmission line circuit is sketched.
In this circuit all the elements have per-unit length units. With I = CdV/dt ∼ jωCV, v = IR, and

V = LdI/dt ∼ jωLI, the KVL equation is
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Figure 1.2: Transmission line equivalent circuit.

(1.1)V(z)− V(z + ∆z) = I(z)∆z
(

R + jωL
)

,

or in the ∆z→ 0 limit

(1.2)
∂V
∂z

= −I(z)
(

R + jωL
)

.

The KCL equation at the interior node is

(1.3)−I(z) + I(z + ∆z) +
(

jωC + G
)

V(z + ∆z) = 0,

or
(1.4)

∂I
∂z

= −V(z)
(

jωC + G
)

.

This pair of equations is known as the telegrapher’s equations

∂V
∂z

= −I(z) (R + jωL)

∂I
∂z

= −V(z) (jωC + G) .
(1.5)

The second derivatives are

∂2V
∂z2 = −∂I

∂z
(R + jωL)

∂2 I
∂z2 = −∂V

∂z
(jωC + G) ,

(1.6)

which allow the V, I to be decoupled

∂2V
∂z2 = V(z) (jωC + G) (R + jωL)

∂2 I
∂z2 = I(z) (R + jωL) (jωC + G) ,

(1.7)
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With a complex propagation constant

(1.8)

γ = α + jβ

=
√(

jωC + G
) (

R + jωL
)

=
√

RG − ω2LC + jω(LG + RC),

the decouple equations have the structure of a wave equation for a lossy line in the frequency
domain

∂2V
∂z2 − γ2V = 0

∂2 I
∂z2 − γ2 I = 0.

(1.9)

We write the solutions to these equations as

V(z) = V+
0 e−γz + V−0 e+γz

I(z) = I+
0 e−γz − I−0 e+γz (1.10)

Only one of V or I is required since they are dependent through eq. (1.5), as can be seen by taking
derivatives

(1.11)
∂V
∂z

= γ
(
−V+

0 e−γz + V−0 e+γz)
= −I(z)

(
R + jωL

)
,

so
I(z) =

γ

R + jωL
(
V+

0 e−γz −V−0 e+γz) . (1.12)

Introducing the characteristic impedance Z0 of the line

(1.13)
Z0 =

R + jωL
γ

=

√
R + jωL
G + jωC

,

we have

(1.14)I(z) =
1

Z0

(
V+

0 e−γz − V−0 e+γz)
= I+

0 e−γz − I−0 e+γz,

where

I+
0 =

V+
0

Z0

I−0 =
V−0
Z0

.
(1.15)
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1.3 Mapping TL geometry to per unit length C and L elements

Example 1.1: Coaxial cable.

From electrostatics and magnetostatics the per unit length induction and capacitance constants
for a co-axial cable can be calculated. For the cylindrical configuration sketched in fig. 1.3

Figure 1.3: Coaxial cable.

From Gauss’ law the total charge can be calculated assuming that the ends of the cable can be
neglected

(1.16)

Q =
∫

∇ ·DdV

=
∮

D · dA

= ε0εrE(2πr)l,

This provides the radial electric field magnitude, in terms of the total charge

E =
Q/l

ε0εr(2πr)
, (1.17)

which must be a radial field as sketched in fig. 1.4.
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Figure 1.4: Radial electric field for coaxial cable.

The potential difference from the inner transmission surface to the outer is

(1.18)

V =
∫ b

a
Edr

=
Q/l

2πε0εr

∫ b

a

dr
r

=
Q/l

2πε0εr
ln

b
a

.

Therefore the capacitance per unit length is

C =
Q/l
V

=
2πε0εr

ln b
a

. (1.19)

The inductance per unit length can be calculated form Ampere’s law

(1.20)

∫
(∇ ×H) · dS =

∫
J · dS +

∂

∂t

∫
���D · dl

= I
=
∮

H · dl

= H(2πr)

=
B
µ0

(2πr)

The flux is

(1.21)

Φ =
∫

B · dA

=
µ0 I
2π

∫
A

1
r

ddr

=
µ0 I
2π

∫ b

a

1
r

lddr

=
µ0 Il
2π

ln
b
a

.

The inductance per unit length is

L =
Φ/l

I
=

µ0

2π
ln

b
a

. (1.22)

For a lossless line where R = G = 0, we have γ =
√

(jωL)(jωC) = jω
√

LC, so the phase velocity
for a (lossless) coaxial cable is
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(1.23)

vφ =
ω

β

=
ω

Im(γ)

=
ω

ω
√

LC)

=
1√
LC)

.

This gives

(1.24)

v2
φ =

1
L

1
C

=
2π

µ0 ln b
a

ln b
a

2πε0εr

=
1

µ0ε0εr

=
1

µ0ε
.

So

(1.25)vφ =
1
√

εµ0
,

which is the speed of light in the medium (εr) that fills the co-axial cable.
This is not a coincidence. In any two-wire homogeneously filled transmission line, the phase

velocity is equal to the speed of light in the unbounded medium that fills the line.
The characteristic impedance (again assuming the lossless R = G = 0 case) is

(1.26)

Z0 =

√
�R + jωL
��G + jωC

=

√
L
C

=

√
µ0

2π
ln

b
a

ln b
a

2πε0εr

=
√

µ0

ε

ln b
a

2π
.

Note that η =
√

µ0/ε0 = 120πΩ is the intrinsic impedance of free space. The values a, b in
eq. (1.26) can be used to tune the characteristic impedance of the transmission line.

6



1.4 Lossless line.

The lossless lossless case where R = G = 0 was considered above. The results were

(1.27)γ = jω
√

LC,

so α = 0 and β = ω
√

LC, and the phase velocity was

(1.28)vφ =
1√
LC

,

the characteristic impedance is

(1.29)Z0 =

√
L
C

,

and the signals are
V(z) = V+

0 e−jβz + V−0 ejβz

I(z) =
1

Z0

(
V+

0 e−jβz −V−0 ejβz
) (1.30)

In the time domain for an infinite line, we have

(1.31)
v(z, t) = Re

(
V(z)ejωt

)
= V+

0 Re
(

e−jβzejωt
)

= V+
0 cos(ωt − βz).

In this case the shape and amplitude of the waveform are preserved as sketched in fig. 1.5.

Figure 1.5: Lossless line signal preservation.
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1.5 Low loss line.

Assume R� ωL and G � ωC. In this case we have

(1.32)

γ =
√

(R + jωL)(G + jωC)

= jω
√

LC

√(
1 +

R
jωL

)(
1 +

G
jωC

)
≈ jω

√
LC
(

1 +
R

2jωL

)(
1 +

G
2jωC

)
≈ jω

√
LC
(

1 +
R

2jωL
+

G
2jωC

)
= jω
√

LC + jω
R
√

C/L
2jω

+ jω
G
√

L/C
2jω

= jω
√

LC +
1
2

(
R

√
C
L

+ G

√
L
C

)
,

so

α =
1
2

(
R

√
C
L

+ G

√
L
C

)
β = ω

√
LC.

(1.33)

Observe that this value for β is the same as the lossless case to first order. We also have

(1.34)
Z0 =

√
R + jωL
G + jωC

≈
√

L
C

,

also the same as the lossless case. We must also have vφ = 1/
√

LC. To consider a time domain
signal note that

(1.35)V(z) = V+
0 e−γz

= V+
0 e−αze−jβz,

so

(1.36)

v(z, t) = Re
(

V(z)ejωt
)

= Re
(

V+
0 e−αze−jβzejωt

)
= V+

0 e−αz cos(ωt − βz).

The phase factor can be written
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(1.37)ωt − βz = ω

(
t − β

ω
z
)

ω
(
t − z/vφ

)
,

so the signal still moves with the phase velocity vφ = 1/
√

LC, but in a diminishing envelope as
sketched in fig. 1.6.

Figure 1.6: Time domain envelope for loss loss line.

Notes

• The shape is preserved but the amplitude has an exponential attenuation along the line.

• In this case, since β(ω) is a linear function to first order, we have no dispersion. All of the
Fourier components of a pulse travel with the same phase velocity since vφ = ω/β is constant.
i.e. v(z, t) = e−αz f (t − z/vφ). We should expect dispersion when the R/ωL and G/ωC start
becoming more significant.

1.6 Distortionless line.

Motivated by the early telegraphy days, when low loss materials were not available. Therefore lines
with a constant attenuation and constant phase velocity (i.e. no dispersion) were required in order to
eliminate distortion of the signals. This can be achieved by setting

R
L

=
G
C

. (1.38)
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When that is done we have

(1.39)

γ =
√

(R + jωL)(G + jωC)

= jω
√

LC

√(
1 +

R
jωL

)(
1 +

G
jωC

)

= jω
√

LC

√(
1 +

R
jωL

)(
1 +

R
jωL

)
= jω
√

LC
(

1 +
R

jωL

)
= R

√
C
L

+ jω
√

LC

=
√

RG + jω
√

LC.

We have

α =
√

RG

β = ω
√

LC.
(1.40)

The phase velocity is the same as that of the lossless and low-loss lines

vφ =
ω

β
=

1√
LC

. (1.41)

1.7 Terminated lossless line.

Consider the load configuration sketched in fig. 1.7.

Figure 1.7: Terminated line.

Recall that

V(z) = V+
0 e−jβz + V−0 e+jβz

I(z) =
V+

0
Z0

e−jβz −
V−0
Z0

e+jβz
(1.42)
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At the load (z = 0), we have

V(0) = V+
0 + V−0

I(0) =
1

Z0

(
V+

0 −V−0
) (1.43)

So

(1.44)

ZL =
V(0)
I(0)

= Z0
V+

0 + V−0
V+

0 − V−0

= Z0
1 + ΓL

1− ΓL
,

where

ΓL ≡
V−0
V+

0
, (1.45)

is the reflection coefficient at the load.
The phasors for the signals take the form

V(z) = V+
0

(
e−jβz + ΓLe+jβz

)
I(z) =

V+
0

Z0

(
e−jβz − ΓLe+jβz

)
.

(1.46)

Observe that we can rearranging for ΓL in terms of the impedances

(1.47)(1− ΓL) ZL = Z0
1 + ΓL

,
or

(1.48)ΓL (Z0 + ZL) = ZL − Z0,

or
(1.49)ΓL =

ZL − Z0

Z0 + ZL
.

Power The average (time) power on the line is

(1.50)

Pav =
1
2

Re (V(Z)I∗(z))

=
1
2

Re
(

V+
0

(
e−jβz + ΓLe+jβz

)(V+
0

Z0

)∗ (
ejβz − Γ∗Le−jβz

))
=
|V+

0 |
2

2Z0
Re
(

1 + ΓLe2jβz − Γ∗Le−2jβz − |ΓL|2
)

=
|V+

0 |
2

2Z0

(
1− |ΓL|2

)
.
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where we’ve made use of the fact that Z0 =
√

L/C is real for the lossless line, and the fact that a
conjugate difference A− A∗ = 2j Im(A) is purely imaginary.

This can be written as

(1.51)Pav = P+ − P−,

where

P+ =
|V+

0 |
2

2Z0

P+ =
|V+

0 |
2

2Z0
|ΓL|2.

(1.52)

This difference is the power delivered to the load. This is not z-dependent because we are consid-
ering the lossless case. Maximum power is delivered to the load when ΓL = 0, which occurs when
the impedances are matched.

1.8 Return loss and insertion loss. Defined.

Return loss (dB) is defined as

(1.53)

RL = 10 log10
Pinc

Prefl

= 10 log10
1

|Γ|2

= −20 log10 |Γ|.

Insertion loss (dB) is defined as

(1.54)

IL = 10 log10
Pinc

Ptrans

= 10 log10
P+

P+ − P−

= 10 log10
1

1− |Γ|2

= −10 log10

(
1− |Γ|2

)
.

1.9 Standing wave ratio

Consider again the lossless loaded configuration of fig. 1.7. Now let z = −l, where l is the distance
from the load. The phasors at this point on the line are
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V(−l) = V+
0

(
ejβl + ΓLe−jβl

)
I(−l) =

V+
0

Z0

(
ejβl − ΓLe−jβl

) (1.55)

The absolute voltage at this point is

(1.56)

|V(−l)| = |V+
0 |
∣∣∣ejβl + ΓLe−jβl

∣∣∣
= |V+

0 |
∣∣∣1 + ΓLe−2jβl

∣∣∣
= |V+

0 |
∣∣∣1 + |ΓL|ejΘLe−2jβl

∣∣∣,
where the complex valued ΓL is given by ΓL = |ΓL|ejΘL .
This gives

|V(−l)| = |V+
0 |
∣∣∣1 + |ΓL|ej(ΘL−2βl)

∣∣∣. (1.57)

The voltage magnitude oscillates as one moves along the line. The maximum occurs when ej(ΘL−2βl) =
1

Vmax = |V+
0 ||1 + |ΓL||. (1.58)

This occurs when ΘL − 2βl = 2kπ for k = 0, 1, 2, · · ·. The minimum occurs when ej(ΘL−2βl) = −1

Vmin = |V+
0 ||1− |ΓL||, (1.59)

which occurs when ΘL − 2βl = (2k− 1)π for k = 1, 2, · · ·. The standing wave ratio is defined as

SWR =
Vmax

Vmin
=

1 + |ΓL|
1− |ΓL|

. (1.60)

This is a measure of the mismatch of a line. This is sketched in fig. 1.8.

Figure 1.8: SWR extremes.

Notes:
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• Since 0 ≤ |ΓL| ≤ 1, we have 1 ≤ SWR ≤ ∞. The lower bound is for a matched line, and open,
short, or purely reactive termination leads to the infinities.

• The distance between two successive maxima (or minima) can be determined by setting ΘL −
2βl = 2kπ for two consecutive values of k. For k = 0, suppose that Vmax occurs at d1

(1.61)ΘL − 2βd1 = 2(0)π,

or

(1.62)d1 =
ΘL

2β
.

For k = 1, let the max occur at d2

(1.63)ΘL − 2βd2 = 2(1)π,

or

(1.64)d2 =
ΘL − 2π

2β
.

The difference is

(1.65)

d1 − d2 =
ΘL

2β
− ΘL − 2π

2β

=
π

β

=
π

2π/λ

=
λ

2
.

The distance between two consecutive maxima (or minima) of the SWR is λ/2.

1.10 Impedance Transformation.

Referring to fig. 1.9, let’s solve for the impedance at the load where z = 0 and at z = −l.
At any point on the line we have

(1.66)V(z) = V+
0 e−jβz

(
1 + ΓLe2jβz

)
,

so at the load and input we have

VL = V+
0 (1 + ΓL)

V(−l) = V+ (1 + ΓL(−1)) ,
(1.67)
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Figure 1.9: Configuration for impedance transformation.

where

V+ = V+
0 ejβl

ΓL(−1) = ΓLe−2jβl
(1.68)

Similarly

I(−l) =
V+

Z0
(1− ΓL(−1)) . (1.69)

Define an input impedance as

(1.70)
Zin =

V(−l)
I(−l)

= Z0
1 + ΓL(−1)
1− ΓL(−1)

This is analogous to

(1.71)ZL = Z0
1 + ΓL

1− ΓL

From eq. (1.49), we have

(1.72)

Zin = Z0
Z0 + ZL + (ZL − Z0) e−2jβl

Z0 + ZL − (ZL − Z0) e−2jβl

= Z0
(Z0 + ZL) ejβl + (ZL − Z0) e−jβl

(Z0 + ZL) ejβl − (ZL − Z0) e−jβl

= Z0
ZL cos(βl) + jZ0 sin(βl)
Z0 cos(βl) + jZL sin(βl)

,

or

Zin =
ZL + jZ0 tan(βl)
Z0 + jZL tan(βl)

. (1.73)

This can be thought of as providing a reflection coefficient function along the line to the load at any
point as sketched in fig. 1.10.
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Figure 1.10: Impedance transformation reflection on the line.
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