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ECE1236H Microwave and Millimeter-Wave Techniques. Lecture 7:
Multisection quarter-wavelength transformers. Taught by Prof. G.V.
Eleftheriades

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course ECE1236H, Microwave and Millimeter-Wave Techniques,

taught by Prof. G.V. Eleftheriades, covering ch. 5 [3] content.

1.1 Terminology review

Zin = R + jX (1.1)

Yin = G + jB (1.2)

• Zin : impedance

• R : resistance

• X : reactance

• Yin : admittance

• G : conductance

• B : susceptance

Apparently this notation goes all the way back to Heavyside!

1.2 Multisection transformers

Using a transformation of the form fig. 1.2 it is possible to optimize for maximum power delivery,
using for example a matching transformation Zin = Z2

1/RL = Z0, or Z1 =
√

RLZ0. Unfortunately, such
a transformation does not allow any control over the bandwidth. This results in a pinched frequency
response for which the standard solution is to add more steps as sketched in fig. 1.1.

This can be implemented in electronics, or potentially geometrically as in this sketch of a mi-
crowave stripline transformer implementation fig. 1.3.
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Figure 1.1: Pinched frequency response.

(a) (b)

Figure 1.2: Single and multiple stage impedance matching.

Figure 1.3: Stripline implementation of staged impedance matching.
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To find a multistep transformation algebraically can be hard, but it is easy to do on a Smith chart.
The rule of thumb is that we want to stay near the center of the chart with each transformation.

There is however, a closed form method of calculating a specific sort of multisection transforma-
tion that is algebraically tractable. That method uses a chain of λ/4 transformers to increase the
bandwidth as sketched in fig. 1.4.

Figure 1.4: Multiple λ/4 transformers.

The total reflection coefficient can be approximated to first order by summing the reflections at each
stage (without considering there may be other internal reflections of transmitted field components).
Algebraically that is

Γ(Θ) ≈ Γ0 + Γ1e−2jΘ + +Γ2e−4jΘ + · · · + ΓNe−2NjΘ, (1.3)

where

Γn =
Zn+1 − Zn

Zn+1 + Zn
(1.4)

Why? Consider reflections at the Z_1, Z_2 interface as sketched in fig. 1.5.

Figure 1.5: Single stage of multiple λ/4 transformers.

Assuming small reflections, where |Γ| � 1 then T = 1 + Γ ≈ 1. Here

(1.5)

Θ = βl

=
2π

λ

λ

4
=

π

2
.
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at the design frequency ω0. We assume that Zn are either monotonically increasing if RL > Z0, or
decreasing if RL < Z0.

Binomial multisection transformers Let

Γ(Θ) = A
(

1 + e−2jΘ
)N

(1.6)

This type of a response is maximally flat, and is plotted in fig. 1.6.
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Figure 1.6: Binomial transformer.

The absolute value of the reflection coefficient is

(1.7)|Γ(Θ)| = |A|
(

ejΘ + e−jΘ
)N

= 2N |A| cosN Θ.

When Θ = π/2 this is clearly zero. It’s derivatives are

d|Γ|
dΘ

= −N cosN−1 Θ sin Θ

d2|Γ|
dΘ2 = −N cosN−1 Θ cos ΘN(N − 1) cosN−2 Θ sin Θ

d3|Γ|
dΘ3 = · · ·

(1.8)

There is a cosN−k term for all derivatives dk/dΘk where k ≤ N− 1, so for an N-section transformer

dn

dΘn |Γ(Θ)|ω0
= 0, (1.9)

for n = 1, 2, · · · , N − 1. The constant A is determined by the limit Θ→ 0, so

Γ(0) = 2N A =
ZL − Z0

ZL + Z0
, (1.10)
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because the various Θ sections become DC wires when the segment length goes to zero. This gives

A = 2−N ZL − Z0

ZL + Z0
. (1.11)

The reflection coefficient can now be expanded using the binomial theorem

(1.12)
Γ(Θ) = A

(
1 + e2jΘ

)N

=
N

∑
k=0

(
N
k

)
e−2jkΘ

Recall that (
N
k

)
=

N!
k! (N − k)!

, (1.13)

providing a symmetric set of values (
N
1

)
=
(

N
N

)
= 1(

N
1

)
=
(

N
N − 1

)
= N(

N
k

)
=
(

N
N − k

)
.

(1.14)

Equating eq. (1.12) with eq. (1.3) we have

Γk = A
(

N
k

)
. (1.15)

Approximation for Zk From [1] (4.6.4), a log series expansion valid for all z is

ln z =
∞

∑
k=0

1
2k + 1

(
z− 1
z + 1

)2k+1

, (1.16)

so for x near unity a first order approximation of a logarithm is

ln x ≈ 2
x− 1
x + 1

. (1.17)

Assuming that Zk+1/Zk is near unity we have

(1.18)

1
2

ln
Zk+1

Zk
≈

Zk+1
Zk
− 1

Zk+1
Zk

+ 1

=
Zk+1 − Zk

Zk+1 + Zk
= Γk.
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Using this approximation, we get

(1.19)

ln
Zk+1

Zk
≈ 2Γk

= 2A
(

N
k

)
= 2
(

2−N
)(N

k

)
ZL − Z0

ZL + Z0

≈ 2−N
(

N
k

)
ln

ZL

Z0
,

I asked what business do we have in assuming that ZL/Z0 is near unity? The answer was that it
isn’t but surprisingly it works out well enough despite that. As an example, consider Z0 = 100Ω and
RL = 50Ω. The exact expression

(1.20)
ZL − Z0

ZL + Z0
=

100− 50
100 + 50

= −0.333,

whereas
(1.21)

1
2

ln
ZL

Z0
= −0.3466,

which is pretty close after all.
Regardless of whether or not that last approximation is used, one can proceed iteratively to Zk+1

starting with k = 0.

Bandwidth To evaluate the bandwidth, let Γm be the maximum tolerable reflection coefficient over
the passband, as sketched in fig. 1.7.

Figure 1.7: Max tolerable reflection.

That is

(1.22)Γm = 2N |A||cos Θm|N

= 2N |A| cosN Θm,
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for Θm < π/2. Then

(1.23)Θm = arccos

(
1
2

(
Γm

|A|

)1/N
)

The relative width of the interval is

(1.24)

∆ fmax

f0
=

∆Θmax

Θ0

=
2(Θ0 − Θmax

Θ0

= 2− 2Θmax

Θ0

= 2− 4Θmax

π

= 2− 4
π

arccos

(
1
2

(
Γmax

|A|

)1/N
)

.
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Example 1.1: Three section binomial transformer.

Design a 3-section binomial transformer to match RL = 50Ω to a line Z0 = 100Ω. Calculate the
BW based on a maximum Γm = 0.05.

Solution The scaling factor

A = 2−N ZL − L0

ZL + Z0
≈ 1

2N+1 ln
ZL

Z0
= −0.0433 (1.25)

Now use

(1.26)ln
Zn+1

Zn
≈ 2−N

(
N
n

)
ln

RL

Z0
,

starting from

• n = 0.

ln
Z1

Z0
≈ 2−3

(
3
0

)
ln

RL

Z0
, (1.27)

or

(1.28)
ln Z1 = ln Z0 + 2−3

(
3
0

)
ln

RL

Z0

= ln 100 + 2−3(1) ln 0.5
= 4.518,
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so
Z1 = 91.7Ω (1.29)

• n = 1

(1.30)ln Z2 = ln Z1 + 2−3
(

3
1

)
ln

50
100

= 4.26

so
(1.31)Z2 = 70.7Ω

• n = 2

(1.32)ln Z3 = ln Z2 + 2−3
(

3
2

)
ln

50
100

= 4.0,

so

(1.33)Z3 = 54.5Ω.

With the fractional BW for Γm = 0.05, where 10 log10 |Γm|2 = −26dB

(1.34)

∆ f
f0
≈ 2− 4

π
arccos

(
1
2

(
Γm

|A|

)1/N
)

= 2− 4
π

arccos

(
1
2

(
0.05

0.0433

)1/3
)

= 0.7

At 2GHz, BW = 0.7(70%) = 1.4GHz, or [2.3, 2.7]GHz, whereas a single λ/4 transformer ZT =√
(100)(50) = 70.7Ω yields a BW of just 0.36GHz (18%).
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