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UofT ece1505 convex optimization: Introduction (taught by Prof. Stark
Draper)

1.1 What’s this course about?

• Science of optimization.

• problem formulation, design, analysis of engineering systems.

1.2 Basic concepts

• Basic concepts. convex sets, functions, problems.

• Theory (about 40 % of the material). Specifically Lagrangian duality.

• Algorithms: gradient descent, Newton’s, interior point, ...

Homework will involve computational work (solving problems, ...)

1.3 Goals

• Recognize and formulate engineering problems as convex optimization problems.

• To develop (Matlab) code to solve problems numerically.

• To characterize the solutions via duality theory

• NOT a math course, but lots of proofs.

• NOT a communications course, but lots of ... (?)

• NOT a CS course, but lots of useful algorithms.

Definition 1.1: Mathematical program

(1.1)min
x

F0(x)
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where x = (x1, x2, · · · , xm) ∈ Rm is subject to constraints Fi : Rm → R1

Fi(x) ≤ 0, i = 1, · · · , m (1.2)

The function F0 : Rm → R1 is called the “objective function”.

Solving a problem produces:
An optimal x∗ is a value x that gives the smallest value among all the feasible x for the objective

function F0. Such a function is sketched in fig. 1.1.

Figure 1.1: Convex objective function.

• A convex objective looks like a bowl, “holds water”.

• If connect two feasible points line segment in the ? above bottom of the bowl.

A non-convex function is illustrated in fig. 1.2, which has a number of local minimums.

Figure 1.2: Non-convex (wavy) figure with a number of local minimums.
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1.4 Example: Line fitting.

A linear fit of some points distributed around a line y = ax + b is plotted in fig. 1.3. Here a, b are the
optimization variables x = (a, b).

Figure 1.3: Linear fit of points around a line.

How is the solution for such a best fit line obtained?

Approach 1: Calculus minimization of a multivariable error function. Describe an error function, de-
scribing how far from the line a given point is.

(1.3)yi − (axi + b),

Because this can be positive or negative, we can define a squared variant of this, and then sum
over all data points.

(1.4)F0 =
n

∑
i=1

(
yi − (axi + b)

)2 .

One way to solve (for a, b): Take the derivatives

(1.5)

∂F0

∂a
=

n

∑
i=1

2(yi − (axi + b))(−xi) = 0

∂F0

∂b
=

n

∑
i=1

2(yi − (axi + b))(−1) = 0.

This yields

(1.6)

n

∑
i=1

yi =

(
n

∑
i=1

xi

)
a +

(
n

∑
i=1

1

)
b

n

∑
i=1

xiyi =

(
n

∑
i=1

x2
i

)
a +

(
n

∑
i=1

xi

)
b.

In matrix form, this is
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(1.7)
[

∑ xiyi

∑ yi

]
=
[

∑ x2
i ∑ xi

∑ xi n

] [
a
b

]
.

If invertible, have an analytic solution for (a∗, b∗). This is a convex optimization problem because
F(x) = x2 is a convex “quadratic program”. In general a quadratic program has the structure

(1.8)F(a, b) = (· · ·)a2 + (· · ·)ab + (· · ·)b2.

Approach 2: Linear algebraic formulation.

(1.9)

y1
...

yn

 =

x1 1
...

...
xn 1

 [a
b

]
+

z1
...

zn

 ,

or
(1.10)y = Hv + z,

where z is the error vector. The problem is now reduced to to: Fit y to be as close to Hv + z as
possible, or to minimize the norm of the error vector, or

(1.11)

min
v
‖y − Hv‖2

2 = min
v

(y − Hv)T (y − Hv)

= min
v

(
yTy − yTHv − vTHy + vTHTHv

)
= min

v

(
yTy − 2yTHv + vTHTHv

)
.

It is now possible to take the derivative with respect to the v vector (i.e. the gradient with respect
to the coordinates of the constraint vector)

(1.12)
∂

∂v

(
yTy − 2yTHv + vTHTHv

)
= −2yTH + 2vTHTH

= 0,

or

(1.13)(HTH)v = HTy,

so, assuming that HTH is invertible, the optimization problem has solution

(1.14)v∗ = (HTH)−1HTy,

where

(1.15)
HTH =

[
x1 · · · xn
1 · · · 1

] x1 1
...

...
xn 1


=
[

∑ x2
i ∑ xi

∑ xi n

]
,

as seen in the calculus approach.
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1.5 Maximum Likelyhood Estimation (MLE).

It is reasonable to ask why the 2-norm was picked for the objective function?

• One justification is practical: Because we can solve the derivative equation.

• Another justification: In statistics the error vector z = y − Hv can be modelled as an IID (In-
dependently and Identically Distributed) Gaussian random variable (i.e. noise). Under this
model, the use of the 2-norm can be viewed as a consequence of such an ML estimation prob-
lem (see [1] ch. 7).

A Gaussian fig. 1.4 IID model is given by

(1.16a)yi = axi + b

zi = yi − axi − b ∼ N(O, O2) (1.16b)

(1.16c)PZ(z) =
1√
2πσ

exp
(
−1

2
z2/σ2

)
.

Figure 1.4: Gaussian probability distribution.

MLE: Maximum Likelyhood Estimator Pick (a, b) to maximize the probability of observed data.

(1.17)

(a∗, b∗) = arg max P(x, y; a, b)
= arg max PZ(y − (ax + b))

= arg max
n

∏
i=1

= arg max
1√
2πσ

exp
(
−1

2
(yi − axi − b)2/σ2

)
.

5



Taking logs gives

(1.18)

(a∗, b∗) = arg max

(
constant− 1

2 ∑
i

(yi − axi − b)2/σ2

)
= arg min

1
2 ∑

i
(yi − axi − b)2/σ2

= arg min ∑
i

(yi − axi − b)2/σ2

Here arg max is not the maximum of the function, but the value of the parameter (the argument)
that maximizes the function.

Double sides exponential noise A double sided exponential distribution is plotted in fig. 1.5, and has
the mathematical form

(1.19)PZ(z) =
1
2c

exp
(
−1

c
|z|
)

.

Figure 1.5: Double sided exponential probability distribution.

The optimization problem is

(1.20)

max
a,b

n

∏
i =1

Pz(zi) = max
a,b

n

∏
i=1

1
2c

exp
(
−1

c
|zi|
)

= max
a,b

n

∏
i=1

1
2c

exp
(
−1

c
|yi − axi − b|

)
= max

a,b

(
1
2c

)n

exp

(
−1

c

n

∑
i=1
|yi − axi − b|

)
.

This is a L1 norm problem

(1.21)min
a,b

n

∑
i =1
|yi − axi − b|.
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i.e.

(1.22)min
v
‖y − Hv‖1 .

This is still convex, but has no analytic solution, and is an example of a linear program.

1.5.1 Solution of linear program

Introduce helper variables t1, · · · , tn, and minimize ∑i ti, such that

(1.23)|yi − axi − b| ≤ ti,

This is now an optimization problem for a, b, t1, · · · tn. A linear program is defined as

(1.24)min
a,b,t1 ,···tn

∑
i

ti

such that
(1.25)yi − axi − b ≤ tiyi − axi − b ≥ −ti

Single sided exponential What if your noise doesn’t look double sided, with only noise for values
x > 0. Can define a single sided probability distribution, as that of fig. 1.6.

Figure 1.6: Single sided exponential distribution.

(1.26)PZ(z) =
{ 1

c e−z/c z ≥ 0
0 z < 0

i.e. all zi error values are always non-negative.

(1.27)log Pz(z) =
{

const− z/c z > 0
−∞ z < 0

Problem becomes

(1.28)min
a,b

∑
i

(
yi − axi − b

)
such that

yi − axi − b ≥ ti ∀i (1.29)
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Figure 1.7: Uniform probability distribution.

Uniform noise For noise that is uniformly distributed in a range, as that of fig. 1.7, which is constant
in the range [−c, c] and zero outside that range.

(1.30)PZ(z) =
{ 1

2c |z| ≤ c
0 |z| > c.

or

(1.31)log PZ(z) =
{

const |z| ≤ c
−∞ |z| > c.

MLE solution

(1.32)max
a,b

n

∏
i =1

P(x, y; a, b) = max
a,b

n

∑
i=1

log PZ(yi − axi − b)

Here the argument is constant if −c ≤ yi − axi − b ≤ c, so an ML solution is any (a, b) such that

|yi − axi − b| ≤ c ∀i ∈ 1, · · · , n. (1.33)

This is a linear program known as a “feasibility problem”.

(1.34)min d

such that

(1.35)
yi − axi − b ≤ d
yi − axi − b ≥ −d

If d∗ ≤ c, then the problem is feasible, however, if d∗ > c it is infeasible.

1.5.2 Method comparison

The double sided exponential, single sided exponential and uniform probability distributions of
fig. 1.8 each respectively represent the point plots of the form fig. 1.9. The double sided exponen-
tial samples are distributed on both sides of the line, the single sided strictly above or on the line, and
the uniform representing error bars distributed around the line of best fit.
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(a) (b) (c)

Figure 1.8: Distributions

(a) (b) (c)

Figure 1.9: Samples
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