
Peeter Joot
peeterjoot@protonmail.com

ECE1505H Convex Optimization. Lecture 3: Matrix functions, SVD, and
types of Sets. Taught by Prof. Stark Draper

Disclaimer Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course ECE1505H, Convex Optimization, taught by Prof. Stark

Draper.

1.1 Matrix inner product

Given real matrices X, Y ∈ Rm×n, one possible matrix inner product definition is

(1.1)

〈X, Y〉 = Tr(XTY)

= Tr

(
m

∑
k=1

XkiYkj

)

=
m

∑
k=1

n

∑
j=1

XkjYkj

=
m

∑
i=1

n

∑
j=1

XijYij.

This inner product induces a norm on the (matrix) vector space, called the Frobenius norm

(1.2)

‖X‖F = Tr(XTX)

=
√
〈X, X〉

=
m

∑
i=1

n

∑
j=1

X2
ij.

1.2 Range, nullspace.

Definition 1.1: Range.
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Given A ∈ Rm×n, the range of A is the set:

R(A) = {Ax|x ∈ Rn} .

Definition 1.2: Nullspace.

Given A ∈ Rm×n, the nullspace of A is the set:

N (A) = {x|Ax = 0} .

1.3 SVD.

To understand operation of A ∈ Rm×n, a representation of a linear transformation from Rn to Rm,
decompose A using the singular value decomposition (SVD).

Definition 1.3: SVD.

Given A ∈ Rm×n, an operator on x ∈ Rn, a decomposition of the following form is always
possible

A = UΣVT

U ∈ Rm×r

V ∈ Rn×r,

where r is the rank of A, and both U and V are orthogonal

UTU = I ∈ Rr×r

VTV = I ∈ Rr×r.

Here Σ = diag(σ1, σ2, · · · , σr), is a diagonal matrix of “singular” values, where

σ1 ≥ σ2 ≥ · · · ≥ σr.

For simplicity consider square case m = n

(1.3)Ax =
(

UΣVT
)

x.

The first product VTx is a rotation, which can be checked by looking at the length

(1.4)

∥∥∥VTx
∥∥∥

2
=
√

xTVVTx

=
√

xTx
= ‖x‖2 ,
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which shows that the length of the vector is unchanged after application of the linear transforma-
tion represented by VT so that operation must be a rotation.

Similarly the operation of U on ΣVTx also must be a rotation. The operation Σ = [σi]i applies a
scaling operation to each component of the vector VTx.

All linear (square) transformations can therefore be thought of as a rotate-scale-rotate operation.
Often the A of interest will be symmetric A = AT.

1.4 Set of symmetric matrices

Let Sn be the set of real, symmetric n× n matrices.

Theorem 1.1: Spectral theorem.

When A ∈ Sn then it is possible to factor A as

A = QΛQT,

where Q is an orthogonal matrix, and Λ = diag(λ1, λ2, · · · λn). Here λi ∈ R ∀i are the (real)
eigenvalues of A.

A real symmetric matrix A ∈ Sn is “positive semi-definite” if

vT Av ≥ 0 ∀v ∈ Rn, v 6= 0,

and is “positive definite” if

vT Av > 0 ∀v ∈ Rn, v 6= 0.

The set of such matrices is denoted Sn
+, and Sn

++ respectively.

Consider A ∈ Sn
+ (or Sn

++ )

(1.5)A = QΛQT,

possible since the matrix is symmetric. For such a matrix

(1.6)vT Av = vTQΛATv
= wTΛw,

where w = ATv. Such a product is

(1.7)vTAv =
n

∑
i=1

λiw2
i .

So, if λi ≥ 0 (λi > 0 ) then ∑n
i=1 λiw2

i is non-negative (positive) ∀w ∈ Rn, w 6= 0. Since w is just a
rotated version of v this also holds for all v. A necessary and sufficient condition for A ∈ Sn

+ (Sn
++ ) is

λi ≥ 0 (λi > 0).
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1.5 Square root of positive semi-definite matrix

Real symmetric matrix power relationships such as

(1.8)A2 = QΛQTQΛQT

= QΛ2QT,

or more generally Ak = QΛkQT, k ∈ Z, can be further generalized to non-integral powers. In
particular, the square root (non-unique) of a square matrix can be written

(1.9)A1/2 = Q


√

λ1 √
λ2

. . . √
λn

QT,

since A1/2 A1/2 = A, regardless of the sign picked for the square roots in question.

1.6 Functions of matrices

Consider F : Sn → R, and define

(1.10)F(X) = log det X,

Here dom F = Sn
++. The task is to find ∇F, which can be done by looking at the perturbation

log det(X + ∆X)

(1.11)
log det(X + ∆X) = log det(X1/2(I + X−1/2∆XX−1/2)X1/2)

= log det(X(I + X−1/2∆XX−1/2))

= log det X + log det(I + X−1/2∆XX−1/2).

Let X−1/2∆XX−1/2 = M where λi are the eigenvalues of M : Mv = λiv when v is an eigenvector of
M. In particular

(1.12)(I + M)v = (1 + λi)v,

where 1 + λi are the eigenvalues of the I + M matrix. Since the determinant is the product of the
eigenvalues, this gives

(1.13)
log det(X + ∆X) = log det X + log

n

∏
i=1

(1 + λi)

= log det X +
n

∑
i=1

log(1 + λi).

If λi are sufficiently “small”, then log(1 + λi) ≈ λi, giving
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(1.14)
log det(X + ∆X) = log det X +

n

∑
i=1

λi

≈ log det X + Tr(X−1/2∆XX−1/2).

Since
(1.15)Tr(AB) = Tr(BA),

this trace operation can be written as

(1.16)log det(X + ∆X) ≈ log det X + Tr(X−1∆X)
= log det X + 〈X−1, ∆X〉,

so
(1.17)∇F(X) = X−1.

To check this, consider the simplest example with X ∈ R1×1, where we have

(1.18)

d
dX

(
log det X

)
=

d
dX

(
log X

)
=

1
X

= X−1.

This is a nice example demonstrating how the gradient can be obtained by performing a first order
perturbation of the function. The gradient can then be read off from the result.

1.7 Second order perturbations

• To get first order approximation found the part that varied linearly in ∆X.

• To get the second order part, perturb X−1 by ∆X and see how that perturbation varies in ∆X.

For G(X) = X−1, this is

(1.19)(X + ∆X)−1 =
(

X1/2(I + X−1/2∆XX−1/2)X1/2
)−1

= X−1/2(I + X−1/2∆XX−1/2)−1X−1/2

To be proven in the homework (for “small” A)

(1.20)(I + A)−1 ≈ I − A.

This gives
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(1.21)(X + ∆X)−1 = X−1/2(I − X−1/2∆XX−1/2)X−1/2

= X−1 − X−1∆XX−1,

or

(1.22)G(X + ∆X) = G(X) + (DG)∆X
= G(X) + (∇G)T∆X,

so
(1.23)(∇G)T∆X = −X−1∆XX−1.

The Taylor expansion of F to second order is

(1.24)F(X + ∆X) = F(X) + Tr
(

(∇F)T∆X
)

+
1
2

(
(∆X)T(∇2F)∆X

)
.

The first trace can be expressed as an inner product

(1.25)Tr
(

(∇F)T∆X
)

= 〈∇F, ∆X〉

= 〈X−1, ∆X〉.

The second trace also has the structure of an inner product

(1.26)(∆X)T(∇2F)∆X = Tr
(

(∆X)T(∇2F)∆X
)

= 〈(∇2F)T∆X, ∆X〉,

where a no-op trace could be inserted in the second order term since that quadratic form is already
a scalar. This (∇2F)T∆X term has essentially been found implicitly by performing the linear variation
of ∇F in ∆X, showing that we must have

(1.27)Tr
(

(∆X)T(∇2F)∆X
)

= 〈−X−1∆XX−1, ∆X〉,

so
(1.28)F(X + ∆X) = F(X) + 〈X−1, ∆X〉 +

1
2
〈−X−1∆XX−1, ∆X〉,

or
(1.29)log det(X + ∆X) = log det X + Tr(X−1∆X)− 1

2
Tr(X−1∆XX−1∆X).

1.8 Convex Sets

• Types of sets: Affine, convex, cones

• Examples: Hyperplanes, polyhedra, balls, ellipses, norm balls, cone of PSD matrices.
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Definition 1.4: Affine set

A set C ⊆ Rn is affine if ∀x1, x2 ∈ C then

θx1 + (1− θ)x2 ∈ C, ∀θ ∈ R.

The affine sum above can be rewritten as

(1.30)x2 + θ(x1 − x2).

Since θ is a scaling, this is the line containing x2 in the direction between x1 and x2.
Observe that the solution to a set of linear equations

C = {x|Ax = b} , (1.31)

is an affine set. To check, note that

(1.32)
A(θx1 + (1− θ)x2) = θAx1 + (1− θ)Ax2

= θb + (1− θ)b
= b.

Definition 1.5: Affine combination.

An affine combination of points x1, x2, · · · xn is

n

∑
i=1

θixi,

such that for θi ∈ R

n

∑
i=1

θi = 1.

An affine set contains all affine combinations of points in the set. Examples of a couple affine sets
are sketched in fig. 1.1.

For comparison, a couple of non-affine sets are sketched in fig. 1.2.

Definition 1.6: Convex set

A set C ⊆ Rn is convex if ∀x1, x2 ∈ C and ∀θ ∈ R, θ ∈ [0, 1], the combination

(1.33)θx1 + (1− θ)x2 ∈ C.
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(a) (b)

Figure 1.1: Affine.

(a) (b)

Figure 1.2: Not affine.
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Definition 1.7: Convex combination

A convex combination of x1, x2, · · · xn is

n

∑
i=1

θixi,

such that ∀θi ≥ 0

n

∑
i=1

θi = 1

Definition 1.8: Convex hull.

Convex hull of a set C is a set of all convex combinations of points in C, denoted

conv(C) =

{
n

∑
i=1

θixi|xi ∈ C, θi ≥ 0,
n

∑
i=1

θi = 1

}
. (1.34)

A non-convex set can be converted into a convex hull by filling in all the combinations of points
connecting points in the set, as sketched in fig. 1.3.

(a) (b)

Figure 1.3: Convex hulls.

Definition 1.9: Cones.

A set C is a cone if ∀x ∈ C and ∀θ ≥ 0 we have θx ∈ C.

This scales out if θ > 1 and scales in if θ < 1.
A convex cone is a cone that is also a convex set. A conic combination is
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Table 1.1: Affine, Convex, and Conic properties.
θi ≥ 0 ∑ θi = 1

Affine No Yes
Convex Yes Yes
Conic Yes No

n

∑
i=1

θixi, θi ≥ 0.

A convex and non-convex 2D cone is sketched in fig. 1.4

(a) (b)

Figure 1.4: Convex and non-convex cone.

A comparison of properties for different set types is tabulated in table 1.1.

1.9 Hyperplanes and half spaces

Definition 1.10: Hyperplane.

A hyperplane is defined by {
x|aTx = b, a 6= 0

}
.

A line and plane are examples of this general construct as sketched in fig. 1.5.
An alternate view is possible should one find any specific x0 such that aTx0 = b

(1.35)
{

x|aTx = b
}

=
{

x|aT(x − x0) = 0
}

This shows that x− x0 = a⊥ is perpendicular to a, or

(1.36)x = x0 + a⊥.
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(a) (b)

Figure 1.5: Hyperplanes.

This is the subspace perpendicular to a shifted by x0, subject to aTx0 = b. As a set

a⊥ =
{

v|aTv = 0
}

. (1.37)

1.10 Half space

Definition 1.11: Half space.

The half space is defined as {
x|aTx = b

}
=
{

x|aT(x− x0) ≤ 0
}

.

This can also be expressed as {x|〈a, x− x0〉 ≤ 0}.
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