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ECE1505H Convex Optimization. Lecture 6: First and second order
conditions. Taught by Prof. Stark Draper

Disclaimer — Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course ECE1505H, Convex Optimization, taught by Prof. Stark
Draper, covering ch. 1 [1] content.

Today

e First and second order conditions for convexity of differentiable functions.
e Consequences of convexity: local and global optimality.

e Properties.

Quasi-convex  F; and F, convex implies max(Fy, F,) convex.

= min

max

Figure 1.1: Min and Max

Note that min(F;, F,) is NOT convex.
If F:R" — R is convex, then F(xp + tv) is convex in t Vt € R, xg € R", v € R", provided xo + tv €
dom F.



Idea: Restrict to a line (line segment) in dom F. Take a cross section or slice through F alone the
line. If the result is a 1D convex function for all slices, then F is convex.

This is nice since it allows for checking for convexity, and is also nice numerically. Attempting to
test a given data set for non-convexity with some random lines can help disprove convexity. How-
ever, to show that F is convex it is required to test all possible slices (which isn’t possible numerically,
but is in some circumstances possible analytically).

Differentiable (convex) functions

— Definition 1.1: First order condition

If

F:R" - R

is differentiable, then F is convex iff dom F is a convex set and Vx, xg € dom F

F(x) > F(xo) + (VF(xp))" (x — xo).

This is the first order Taylor expansion. If n = 1, this is F(x) > F(xo) + F'(x0)(x — xp).
The first order condition says a convex function always lies above its first order approximation, as

sketched in fig. 1.2.
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Figure 1.2: First order approximation lies below convex function

When differentiable, the supporting plane is the tangent plane.

Definition 1.2: Second order condition

If F: R" — R is twice differentiable, then F is convex iff dom F is a convex set and V2F (x) >



0Vx € dom F.

The Hessian is always symmetric, but is not necessarily positive. Recall that the Hessian is the
matrix of the second order partials (VF);; = 0°F/ (9x;0x;).

The scalar case is F”(x) > 0Vx € dom F.

An implication is that if F is convex, then F(x) > F(xg) + F'(x0)(x — x0) Vx, xo € dom F

Since F is convex, dom F is convex.

Consider any 2 points x,y € dom F, and 6 € [0, 1]. Define

z=(1-0)x+60y € domF, (1.1)
then since dom F is convex
F(z) = F(1 — 0)x + 6y) (1.2)
< (1 —0)F(x)+0F(y)
Reordering
OF(x) > 6F(x) + F(z) — F(x), (1.3)
or

F(x +6(y — %)) — F(x)

F(y) > F(x) + 5 , (1.4)
which is, in the limit,
F(y) 2 Fx)+ F()y —x) O (1.5)
To prove the other direction, showing that
F(x) > F(xo) + F'(x0)(x — x0), (1.6)
implies that F is convex. Take any x,y € dom F and any 6 € [0, 1]. Define
z=0x+(1-0)y, (1.7)
which is in dom F by assumption. We want to show that
F(z) < 6F(x)+ (1 — 0)F(y). (1.8)

By assumption
(i) F(x) > F(z) + F'(z)(x — 2)
(i) F(y) = F(2) + F'(2)(y — 2)

Compute

OF(x) + (1 — 0)F(y) > 0 (F(z) + F'(z)(x — 2)) + (1 — 0) (F(2) + F'(2)(y — 2))
=F(z)+ F'(z) (0(x —2) + (1 — 0)(y — 2))
= F(z)+ F'(z) (0x + (1 — O)y — 6z — (1 — 0)z) (1.9)
= F(z) + F'(z) (0x + (1 — 0)y — 2)
=F(z)+ F(2)(z — 2)
= F(z).



Proof of the 2nd order case forn =1  Want to prove that if

F:R—R (1.10)

is a convex function, then F”(x) > 0Vx € dom F.
By the first order conditions Vx # y € dom F

F(y) > F(x) + F'(x)(y — x)F(x) > F(y)+ F'(y)(x —y) (1.11)
Can combine and get
F'(x)(y —x) < F(y) — F(x) < F'(y)(y — x) (1.12)
Subtract the two derivative terms for
/ !/
(F'(y) ?yp_(i)))z(y 9, (113)
or
Py = P > 0. (1.14)
y—x
In the limit as y — x, this is
F'(x) > 0Vx € domF. (1.15)

Now prove the reverse condition:

If F’(x) > 0Vx € dom F C R, implies that F : R — R is convex.
Note that if F”(x) > 0, then F’(x) is non-decreasing in x.

ie. If x <y, where x,y € domF, then

F(x) < F'y). (1.16)
Consider any x, y € dom F such that x < y, where

F(y) — F(x) = /xy F'(t)dt

S P /y L (1.17)
= F(0(y — ).
This tells us that
F(y) > F(x) + F'(x)(y — x), (1.18)

which is the first order condition. Similarly consider any x,y € dom F such that x < y, where

F(y) — F(x) = / TPt

< F(y) /1/ 14t (1.19)
=Fy)y —x).
This tells us that
F(x) > F(y) + F'(y)(x — y). (1.20)



Vector proof:  F is convex iff F(x + tv) is convex Vx, v € R",t € R, keeping x + tv € dom F.

Let h(t;x,v) = F(x + tv) (1.21)

then h(t) satisfies scalar first and second order conditions for all x, v.

h(t) = F(x + tv) (1.22)
= F(g()),
where g(t) = x + tv, where
F:R" - R
" (1.23)
g:R — R".

This is expressing h(t) as a composition of two functions. By the first order condition for scalar
functions we know that

h(t) > h(0) + K (0)t. (1.24)
Note that

h(0) = F(x +tv)|,_, = F(x). (1.25)
Let’s figure out what /'(0) is. Recall hat for any F : R" — R™

DF € R™™", (1.26)
and 3E()
~ Fi(X
DF(x);; = (1.27)
gl ax]‘

This is one function per row, for i € [1,m], ] € [1,n]. This gives

d d
—F(x+vt) = aF(g(t))

dt I
= %h(t) (1.28)
= Dh(t)
= DF(g(t)) - Dg(t)

The first matrix is in R1*” whereas the second is in R"*!, since F : R" — R and g : R — R". This
gives

d
i F(x+v1) = DF®)|_gy - DS(O). (1.29)

That first matrix is



DF(X)|5 g = ([BF“) OFX) ...6F6>}>

T]Zl axz afﬂ

X=g X=g(t)=x+tv
_ T
= (VFQ)'|_
= (VEG®)".
The second Jacobian is
gl(t) x1 +tog (%
Dg(t) = D gzz(f) _D X2 + tvy _ 17:1 .
gn'(t) Xn + to, z;n
SO
W' (t) = Dh(t)
= (VFE®)'v,
and
H(0) = (VE@GO))' v
= (VFx) v.
Finally

E(x + tv) > h(0) + I/ (0)t
= F(x) + (VF(x))" (tv)
= F(x) + (VF(x), tv).

Which is true for all x, x + tv € dom F. Note that the quantity tv is a shift.

Epigraph  Recall that if (x, t) € epi F then t > F(x).
t > F(x)
> F(xo) + (VF(x))" (x — xo),
or
0> —(t — F(x0)) + (VE(x0))" (x = x0),
In block matrix form

0> [(VF(XO))T _1} [tx—_F()i)O)]

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

With w = [(VF(xo))T —1] , the geometry of the epigraph relation to the half plane is sketched in

fig. 1.3.



Figure 1.3: Half planes and epigraph.
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