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ECE1505H Convex Optimization. Lecture 7: Examples of convex and
concave functions, local and global minimums. Taught by Prof. Stark
Draper

Disclaimer — Peeter’s lecture notes from class. These may be incoherent and rough.
These are notes for the UofT course ECE1505H, Convex Optimization, taught by Prof. Stark
Draper, from [1].

Today
e Local and global optimality
e Compositions of functions

e Examples

Example:
F(x) = x*
/,( ) (1.1)
Fi(x)=2>0
strictly convex.
Example:
F(x) = x°
1" (1.2)
F"(x) = 6x.
Not always non-negative, so not convex. However x° is convex on dom F = RR;.
Example:
F(x) = x*
F'(x) = ax®! (1.3)

F'(x) = a(a — 1)x* 2.

Thisis convexonR,,ifa > 1,0ora <0.
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Figure 1.1: Powers of x.

Example:
F(x) = log x

o1
Fx) =< (1.4)

F'(x) = —% <0

This is concave.

Example:
F(x) = xlogx
1
/ = —_ =
F(x)—logx+xx 1+logx (1.5)
1

1" _
F'(x) = ,

This is strictly convex on R, where F”(x) > 0.

Example:
F(x) = ™"

F'(x) = ae™ (1.6)
F'(x) = a%e"* >0

Such functions are plotted in fig. 1.2, and are convex function for all «.

Example: ~ For symmetric P € S"
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Figure 1.2: Exponential.

F(x) = x Px + 2qTx +7r
VF=(P+Phx+2q=2Px+2q (1.7)
V?2F =2P.
This is convex(concave) if P > 0 (P < 0).

Example: A quadratic function
F(x,y) = x* + y* + 3xy, (1.8)

that is neither convex nor concave is plotted in fig. 1.3
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Figure 1.3: Function with saddle point (3d and contours).
This function can be put in matrix form

F(x,y) = x* + y* + 3xy
~ 1 15] [« (1.9)
el



and has the Hessian

V2F

dyeF By, F

|
5

2P.

(1.10)

From the plot we know that this is not PSD, but this can be confirmed by checking the eigenvalues

0 =det(P — AI)
=1 — A2 - 157 (D
which has solutions
A=1+ §
3 % (1.12)
"2y

This is not PSD nor negative semi-definite, because it has one positive and one negative eigenval-
ues. This is neither convex nor concave.

Alongy = —x,
P(x/y) = F(xl _x)
= 2x% — 3x? (1.13)
= —xz

so it is concave along this line. Along y = x

F(x,y) = F(x, x)

= 2x% + 3x2 (1.14)

= 5x2,
so it is convex along this line.

Example:
F(x) = /x1x2, (1.15)
ondomF = {x; >0,x, >0}
For the Hessian
OF 1 1,2 12

(1.16)



The Hessian components are

d JF _ _L a2 )2
8x1 8x1 - 4 1 2

9 dF 1 _1p 1
8x1 BXQ B 4 2 1

9 JF _ lx—l/zx—uz
dxp0x; 471 7?2

d JF _ _lx—3/2x1/2
axz axz - 4 2 1

(1.17)

or

4 _ 1 1

x1X2 x3

1 1
v L [ 7 _"”‘2] . (1.18)

Checking this for PSD against v = (v1, v2), we have

X122 x3 X122 x?vz
1
= 5 — 0 |01+ | ———01 + 22)2 (%)
X X1X2 X1X2 X
) 1 , . 2 (1.19)
= —zv% + —27)2 2——0107
xl x2 X1

so V2F < 0. This is a negative semi-definite function (concave). Observe that this check required
checking PSD for all values of x.
This is an example of a more general result

i=1

. 1/n
F(x) = (H xi> , (1.20)

which is concave (prove on homework).

Summary. If F is differentiable in IR", then check the curvature of the function along all lines. i.e. At
all locations and in all directions.
If the Hessian is PSD at all x € dom F, that is
V2F > 0Vx € domF, (1.21)

then the function is convex.



more examples of convex, but not necessarily differentiable functions
Example:  Over dom F = R"

F(x) = max X;
i=1

ie.
F((1,2)=2
F((3,-1)=3
Example:
F(x) = max F(x),
i=
where

Pi(x) =..7

max of a set of convex functions is a convex function.

Example:
F(x) = xqy + X121 + X
where
x[x] is the k-th largest number in the list
Write

F(x) = maxx; + x; + x¢

G,7,k) € <Z>

Example: Fora € R"and b; € R

Hm:fmgm—£m4
i=1

= —) log(b; — a'x)
i=1

This b; — a’x is an affine function of x so it doesn’t affect convexity.

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

Since log is concave, — log is convex. Convex functions of affine function of x is convex function of

X.



Figure 1.4: Max length function

Example:
F(x) = sup [|x —y/| (1.30)
yeC

Here C C R" is not necessarily convex. We are using sup here because the set C may be open. This
function is the length of the line from x to the point in C that is furthest from x.

e x — yis linear in x
® gy(x) = ||x — y|| is convex in x since norms are convex functions.

 F(x) =supy.c|[x—y||. Eachy index is a convex function. Taking max of those.

Example:
F(x) = inf ||x — y]| . (1.31)
yeC

Min and max of two convex functions are plotted in fig. 1.5.
The max is observed to be convex, whereas the min is not necessarily so.

F(z) = F(Ox + (1 — 0)y)

(1.32)
> 0F(x) + (1 — O)F(y).

This is not necessarily convex for all sets C C IR", because the inf of a bunch of convex function is
not necessarily convex. However, if C is convex, then F(x) is convex.

Consequences of convexity for differentiable functions

e Think about unconstrained functions dom F = R".



= min

max

Figure 1.5: Min and max

e By first order condition F is convex iff the domain is convex and

F(x) > (VF(x))" (y —x)Vx,y € domF. (1.33)
If F is convex and one can find an x* € dom F such that
VF(x*) =0, (1.34)
then
F(y) > F(x*)Vy € dom F. (1.35)

If you can find the point where the gradient is zero (which can’t always be found), then x* is a
global minimum of F.

Conversely, if x* is a global minimizer of F, then VF(x*) = 0 must hold. If that were not the case,
then you would be able to find a direction to move downhill, contracting the optimality of x*.

Local vs Global optimum

—| Definition 1.1: Local optimum.

x* is a local optimum of F if Je > 0 such that Vx, ||x — x*|| < €, we have

F(x*) < F(x)

— Theorem 1.1

Suppose F is twice continuously differentiable (not necessarily convex)
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Figure 1.6: Global and local minimums
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e If x* is a local optimum then

VEKx*) =0
V2F(x*) >0
o If
VEx) =0
V2F(x*) > 0

then x* is a local optimum.

Proof:

e Let x* be a local optimum. Pick any v € R".

lim F(x* + tv) — F(x*)

_ #\\ T
m ; = (VF(x")) v=>0. (1.36)

Here the fraction is > 0 since x* is a local optimum.
Since the choice of v is arbitrary, the only case that you can ensure that > 0, Vv is

VF=0, (1.37)

(or else could pick v = =V F(x").
This means that VF(x*) = 0 if x* is a local optimum.
Consider the 2nd order derivative

F(x* +tv) — F(x*)

. e 1 . ewTo Lo T2« 3y
thil}) 2 —%1_1)18 2 (F(x )+t (VF(xY)) v+ 2t v V°F(x*)v + O(t’) — F(x™)
1 (1.38)
= EVTVZF(X*)V
> 0.

Here the > condition also comes from the fraction, based on the optimiality of x*. This is true for
all choice of v, thus V2F(x*).
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