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1
I N T RO D U C T I O N

Maxwell’s equations

• Faraday’s Law

(1.1)∇ × E(r, t) = −
∂B
∂t

(r, t) −Mi

• Ampere-Maxwell equation

(1.2)∇ ×H(r, t) = Jc(r, t) +
∂D
∂t

(r, t)

• Gauss’s law

(1.3)∇ · D(r, t) = ρev(r, t)

• Gauss’s law for magnetism

(1.4)∇ · B(r, t) = ρmv(r, t)

After unpacking, we have a total of eight equations, with four vectoral field variables, and 8
sources, all interrelated by partial derivatives in space and time coordinates.

It will be left to homework to show that without the displacement current ∂D/∂t, these equa-
tions will not satisfy conservation relations.

The fields are and sources are

• E Electric field intensity V/m.

• B Magnetic flux density Vs/m2 (or Tesla).

• H Magnetic field intensity A/m.

• D Electric flux density C/m2.

• ρev Electric charge volume density

• ρmv Magnetic charge volume density

3



4 introduction

• Jc Impressed (source) electric current density A/m2. This is the charge passing through
a plane in a unit time. Here c is for “conduction”.

• Mi Impressed (source) magnetic current density V/m2

In an undergrad context we’ll have seen the electric and magnetic fields in the Lorentz force
law

(1.5)F = qv × B + qE.

In SI there are 7 basic units. These include

• Length m.

• mass kg.

• Time s.

• Ampere A.

• Kelvin K (temperature)

• Candela (luminous intensity)

• Mole (amount of substance)

Note that the Coulomb is not a fundamental unit, but the Ampere is. This is because it is
easier to measure.

For homework: show that magnetic field lines must close on themselves when there are no
magnetic sources (zero divergence). This is opposed to electric fields that spread out from the
charge.



2
B O U N DA R I E S

Integral forms Given Maxwell’s equations at a point

(2.1)

∇ × E = −
∂B
∂t

∇ ×H = J +
∂D
∂t

∇ · D = ρv

∇ · B = 0

what happens when we have different fields and currents on two sides of a boundary? To
answer these questions, we want to use the integral forms of Maxwell’s equations, over the
geometries illustrated in fig. 2.1.

Figure 2.1: Loop and pillbox configurations.

To do so, we use Stokes’ and the divergence theorems relating the area and volume integrals
to the surfaces of those geometries.

These are

(2.2)

"
S
(∇ × A) · ds =

∮
C

A · dl"
V
(∇ · A) ds =

∮
A

A · ds

Application of the Stokes’ to Faraday’s law we get

(2.3)
∮

C
E · dl = −

∂

∂t

"
B · ds

5



6 boundaries

UNITS: V/m ×m
The quantity

(2.4)
"

B · ds,

is called the magnetic flux of B, and changing of this flux is responsible for the generation of
electromotive force.

Similarly

(2.5)

∮
H · dl =

"
J · ds +

∂

∂t

"
D · ds∮

D · ds =

$
ρvdV = Qe∮

B · ds = 0.

Constitutive relations With 12 unknowns in E,B,D,H and 8 equations in Maxwell’s equa-
tions (or 6 if the divergence equations are considered redundant), things don’t look too good for
solutions. In simple media, in the frequency domain, relations of the form

(2.6)
D(r, ω) = εE(r, ω)

B(r, ω) = µH(r, ω).

The permeabilities ε and µ are macroscopic beasts, determined either experimentally, or the-
oretically using an averaging process involving many (millions, or billions, or more) particles.
However, the theoretical determinations that have been attempted do not work well in practise
and usually end up considerably different than the measured values. We are referred to [8] for
one attempt to model the statistical microscopic effects non-quantum mechanically to justify
the traditional macroscopic form of Maxwell’s equations.

These can be position dependent, as in the grating sketched in fig. 2.2.
The permeabilities can also depend on the strength of the fields. An example, application of

an electric field to gallium arsenide or glass can change the behaviour in the material. We can
also have non-linear effects, such as the effect on a capacitor when the voltage is increased. The
response near the breakdown point where the capacitor blows up demonstrates this spectacularly.
We can also have materials for which the permeabilities depend on the direction of the field,
or the temperature, or the pressure in the environment, the tensile or compression forces on
the material, or many other factors. There are many other possible complicating factors, for
example, the electric response ε can depend on the magnetic field strength |B|. We could then
write

(2.7)ε = ε(r, |E|,E/|E|,T, P,
∣∣∣η∣∣∣, ω, k).
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Figure 2.2: Grating.

Further complicating things is that ε is a complex number (for fields specified in the frequency
domain).

We can also have anisotropic situations where the electric and displacement fields are no
longer colinear as sketched in fig. 2.3.

Figure 2.3: Anisotropic field relations.

which indicates that the permittivity ε in the relation

(2.8)D = εE,

can be modelled as a matrix or as a second rank tensor. When the off diagonal entries are zero,
and the diagonal values are all equal, we have the special case where ε is reduced to a function.
That function may still be complex-valued, and dependent on many factors, but it least it is
scalar valued in this situation.

Polarization and magnetization If we have a material (such as glass), we can generally as-
sume that the induced field can be related to the vacuum field according to

(2.9)E = P + ε0E,
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and

(2.10)B = µ0M + µ0H
= µ0 (M + H) .

Here the vacuum permittivity ε0 has the value 8.85 × 10−12F/m. When we are ignoring (fic-
tional) magnetic sources, we have a constant relation between the magnetic fields B = µ0H.

Assuming P = ε0χeE, then

(2.11)D = ε0E + ε0χeE
= ε0(1 + χe)E,

so with εr = 1 + χe, and ε = ε0εr we have

(2.12)D = εE.

Note that the relative permittivity εr is dimensionless, whereas the vacuum permittivity has
units of F/m. We call ε the (unqualified) permittivity. The relative permittivity εr is sometimes
called the relative permittivity.

Another useful quantity is the index of refraction

(2.13)η =
√
εrµr

≈
√
εr.

Similar to the above we can write M = χmH then

(2.14)
M = µ0H + µ0M

= µ0 (1 + χm) H
= µ0µrH

so with µr = 1 + χm, and µ = µ0µr we have

(2.15)B = µH.

Linear and angular momentum in light It was pointed out that we have two relations in me-
chanics that relate momentum and forces

(2.16)
F =

dP
dt

τ =
dL
dt
,

where P = mv is the linear momentum, and L = r× p is the angular momentum. In quantum
electrodynamics, the photon can be described using a relationship between wave-vector and
momentum
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(2.17)

p = h̄k

= h̄
2π
λ

=
h

2π
2π
λ

=
h
λ
,

where h̄ = 6.522 × 10−16ev s.
Photons are also governed by

(2.18)E = h̄ω
= hν.

(De-Broglie’s relations).
ASIDE: optical fibre at 1550 has the lowest amount of optical attenuation.
Since photons have linear momentum, we can move things around using light. With photons

having both linear momentum and energy relationships, and there is a relation between between
torque and linear momentum, it seems that there must be the possibility of light having angular
momentum.

Is it possible to utilize the angular momentum to impose patterns on beams (such as laser
beams). For example, what if a beam could have a geometrical pattern along its line of propaga-
tion, being off in some regions, on in others. This is in fact possible, generating beams that are
“self healing”.

The question was posed “Is it possible to solve electromagnetic problems utilizing the force
concepts?”, using the Lorentz force equation

(2.19)F = qv × B + qE.

This was not thought to be a productive approach due to the complexity.
FIXME: It appeared that this animated talk (probably not captured well) about momentum in

light was linked to the idea of the Helmholtz theorem. Exactly how was not clear to me.

Helmholtz’s theorem Suppose that we have a linear material where

(2.20)

∇ × E = −
∂B
∂t

∇ ×H = J +
∂D
∂t

∇ · E =
ρv

ε0

∇ ·H = 0
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We have relations between the divergence and curl of E given the sources. Is that sufficient
to determine E itself? The answer is yes, which is due to the Helmholtz theorem.

Extra homework question (bonus) : can knowledge of the tangential components of the fields
also be used to uniquely determine E?

2.1 problems

Exercise 2.1 Displacement current and Ampere’s law.

Show that without the displacement current ∂D/∂t, Maxwell’s equations will not satisfy conser-
vation relations.
Answer for Exercise 2.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 2.2 Electric field due to spherical shell ([5] pr. 2.7)

Calculate the field due to a spherical shell. The field is

(2.21)E =
σ

4πε0

∫
(r − r′)
|r − r′|3

da′,

where r′ is the position to the area element on the shell. For the test position, let r = ze3.
Answer for Exercise 2.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
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. . .
. .

. .
. END-REDACTION

Exercise 2.3 Solenoidal fields

For the electric fields graphically shown below indicate whether the fields are solenoidal
(divergence free) or not. In the case of non-solenoidal fields indicate the charge generating the
field is positive or negative. Justify your answer.

Figure 2.4: Field lines

Answer for Exercise 2.3

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 2.4 Electric field lines.

Can either or both of the vector fields shown below represent an electrostatic field E. Justify
your answer.
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(a) (b)

Figure 2.5: Field lines.

Answer for Exercise 2.4

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 2.5 Solenoidal and irrotational fields.

In terms of E or H give an example for each of the following conditions:

a. Field is solenoidal and irrotational.

b. Field is solenoidal and rotational.

c. Field is non-solenoidal and irrotational.

d. Field is non-solenoidal and rotational.
Answer for Exercise 2.5

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
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. . .
. .

. .
. END-REDACTION

Exercise 2.6 Conducting sheet with hole.

Figure 2.6. shows a flat, positive, non-conducting sheet of charge with uniform charge density
σ [C/m2]. A small circular hole of radius R is cut in the middle of the surface as shown.

Figure 2.6: Conducting sheet with a hole.

Calculate the electric field intensity E at point P, a distance z from the centre of the hole
along its axis.

Hint 1: Ignore the field fringe effects around all edges. Hint 2: Calculate the field due to a
disk of radius R and use superposition.
Answer for Exercise 2.6

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION
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Exercise 2.7 Helmholtz theorem

Prove the first Helmholtz’s theorem, i.e. if vector M is defined by its divergence

(2.22)∇ ·M = s

and its curl

(2.23)∇ ×M = C

within a region and its normal component Mn over the boundary, then M is uniquely speci-
fied.
Answer for Exercise 2.7

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 2.8 Waveguide field

The instantaneous electric field inside a conducting parallel plate waveguide is given by

(2.24)E(r, t) = e2E0 sin
(
π

a
x
)

cos (ωt − βzz)

where βz is the waveguide’s phase constant and a is the waveguide width (a constant). As-
suming there are no sources within the free-space-filled pipe, determine

a. The corresponding instantaneous magnetic field components inside the conducting pipe.

b. The phase constant βz.

Answer for Exercise 2.8

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
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. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 2.9 Infinite line charge.

An infinitely long straight line charge has a constant charge density ρl [C/m].

a. Using the integral formulation for E discussed in the class calculate the electric field at
an arbitrary point A(ρ, φ, z).

b. Using the Gauss law calculate the same as part a.

c. Now suppose that our uniformly charged (ρl constant) has a finite extension from z = a
to z = b, as sketched in fig. 2.7. Find the electric field at the arbitrary point A.

Figure 2.7: Line charge.

Note: Express your results in cylindrical coordinate system.

Answer for Exercise 2.9

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
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. . .
. .

. .
. END-REDACTION

Exercise 2.10 Gradient in cylindrical coordinates.

If gradient of a scalar function ψ rectangular coordinate system is given by

(2.25)∇ψ = x̂1
∂ψ

∂x
+ ŷ2

∂ψ

∂y
+ ẑ

∂ψ

∂z
,

using coordinate transformation and chain rule show that the gradient of ψ in cylindrical
coordinates is given by

(2.26)∇ψ = ρ̂
∂ψ

∂ρ
+ φ̂

1
ρ

∂ψ

∂φ
+ ẑ

∂ψ

∂z
.

Answer for Exercise 2.10

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 2.11 Point charge.

a. Consider a point charge q. Using Maxwell equations, derive an expression for the elec-
tric field E generated by q at the distance r from it. Clearly express your assumptions
and justify them.

b. Derive an expression for the force experience by the charge q′ located at distance r from
the charge q. (This is called Coulomb force)

c. Derive an expression for the electrostatic potential V at the distance r from the charge
q with respect to the electrostatic potential at infinity. For convenience, set the value of
electrostatic potential at infinity to zero.
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Answer for Exercise 2.11

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION





3
E L E C T RO S TAT I C S A N D D I P O L E S .

Polarization and Magnetization The importance of the polarization and magnetization given
by

(3.1)
D = ε0E + P
P = ε0χeE,

where

(3.2)

D = εE
ε = ε0εr

εr = 1 + χe.

Point charge.

(3.3)

E =
q

4πε0

r̂
r2

=
q

4πε0

r
|r|3

=
q

4πε0

r
r3 .

In more complex media the ε0 here can be replaced by ε. Here the vector r points from the
charge to the observation point.

Note that the class notes use âR instead of r̂.
When the charge isn’t located at the origin, we must modify this accordingly

(3.4)
E =

q
4πε0

R
|R|3

=
q

4πε0

R
R3 ,

where R = r − r′ still points from the location of the charge to the point of observation, as
sketched in fig. 3.1.

This can be further generalized to collections of point charges by superposition

(3.5)E =
1

4πε0

∑
i

qi
r − r′i∣∣∣r − r′i

∣∣∣3 .

19



20 electrostatics and dipoles .

Figure 3.1: Vector distance from charge to observation point.

Observe that a potential that satisfies E = −∇V can be defined as

(3.6)V =
1

4πε0

∑
i

qi∣∣∣r − r′i
∣∣∣ .

When we are considering real world scenarios (like touching your hair, and then the table),
how do we deal with the billions of charges involved. This can be done by considering the
charges so small that they can be approximated as a continuous distribution of charges.

This can be done by introducing the concept of a continuous charge distribution ρv(r′). The
charge that is in a small differential volume element dV ′ is ρ(r′)dV ′, and the superposition has
the form

(3.7)E =
1

4πε0

$
dV ′ρv(r′)

r − r′

|r − r′|3
,

with potential

(3.8)V =
1

4πε0

$
dV ′

ρv(r′)
|r − r′|

.

The surface charge density analogue of this is

(3.9)E =
1

4πε0

"
dA′ρs(r′)

r − r′

|r − r′|3
,

with potential

(3.10)V =
1

4πε0

"
dA′

ρs(r′)
|r − r′|

.

The line charge density analogue of this is

(3.11)E =
1

4πε0

∫
dl′ρl(r′)

r − r′

|r − r′|3
,
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with potential

(3.12)V =
1

4πε0

∫
dl′

ρl(r′)
|r − r′|

.

The difficulty with any of these approaches is the charge density is hardly ever known. When
the charge density is known, this sorts of integrals may not be analytically calculable, but they
do yield to numeric calculation.

We may often prefer the potential calculations of the field calculations because they are much
easier, having just one component to deal with.

Electric field of a dipole. An equal charge dipole configuration is sketched in fig. 3.2.

Figure 3.2: Dipole sign convention.

(3.13)
r1 = r −

d
2

r2 = r +
d
2

The electric field is

(3.14)
E =

q
4πε0

r1

r3
1

−
r2

r3
2

 .
=

q
4πε0

(
r − d/2
|r − d/2|3

−
r + d/2
|r + d/2|3

)
For r � |d|, this can be reduced using the normal first order reduction techniques, left to an

exersize.
This is essentially requires an expansion of

(3.15)|r ± d/2|−3/2 = ((r ± d/2) · (r ± d/2))−3/2

The final result with p = qd (the dipole moment) can be found to be
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(3.16)E =
1

4πε0r3

(
3

r · p
r2 r − p

)
With p = qẑ, we have spherical coordinates for the observation point, and Cartesian for the

dipole moment. To convert the moment to spherical we can use

(3.17)


Ar

Aθ
Aφ

 =


sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0



Ax

Ay

Az

 .
All such rotation matrices can be found in the appendix of [2] for example. For the dipole

vector this gives

(3.18)


pr

pθ
pφ

 =


cos θp

− sin θp

0

 .
or

p = pẑ = p
(
cos θr̂ − sin θθ̂

)
(3.19)

Plugging in this eventually gives

(3.20)E =
p

4πε0r3

(
2 cos θr̂ + sin θθ̂

)
,

where |r| = r.
It will be left to a problem to show that the potential for an electric dipole is given by

(3.21)V =
p · r̂

4πε0r2 .

Observe that the dipole field drops off faster than the field for a single electric charge. This is
true generally, with quadrupole and higher order moments dropping off faster as the degree is
increased.

Potentials due to bound (polarized) surface and volume charge densities. When an electric
field is applied to a volume, bound charges are induced on the surface of the material, and
bound charges induced in the volume. Both of these are related to the polarization P, and the
displacement current in the material, in a configuration such as the capacitor sketched in fig. 3.3.

Consider, for example, a capacitor using glass as a dielectric. The charges are not able to
move within the insulating material, but dipole configurations can be induced on the surface
and in the bulk of the material, as sketched in fig. 3.4.
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Figure 3.3: Circuit with displacement current.

Figure 3.4: Glass dielectric capacitor bound charge dipole configurations.

How many materials behave is largely determined by electric dipole effects. In particular, the
polarization P can be considered the density of electric dipoles.

(3.22)P = lim
∆v′→0

N∆v′∑
k

pk

∆v′
,

where N is the number density in the volume at that point, and ∆v′ is the differential volume
element. Dimensions:

• [p] = C m

• [P] = C/m2

In particular, when the electron cloud density of a material is not symmetric, as is the case
in the p-orbital roughly sketched in fig. 3.5, then we have a dipole configuration in each atom.
When the atom is symmetric, by applying an electric field, a dipole configuration can be created.

As the volume shrinks to zero, the dipole moment can be expressed as

(3.23)P =
dp
dv
.
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Figure 3.5: A p-orbital dipole like electronic configuration.

For an elemental dipole dp = Pdv′, the contribution to the potential is

(3.24)
dV =

dp · r̂
4πε0R2

=
P · r̂

4πε0R2 dv′

Since

(3.25)∇
′ 1
R

=
r̂

R2 ,

this can be written as

(3.26)

V =
1

4πε0

∫
v′

dv′P · ∇′
1
R

=
1

4πε0

∫
v′

dv′∇′ ·
P
R
−

1
4πε0

∫
v′

dv′
∇′ · P

R

=
1

4πε0

(∮
S ′

ds′n̂ ·
P
R
−

∫
v′

dv′
∇′ · P

R

)
Looking back to the potentials in their volume density eq. (3.8) and surface charge density

eq. (3.9) forms, we see that identifications can be made with the volume and surface charge
densities

(3.27)
ρ′s = P · n̂
ρ′v = ∇′ · P

Dropping primes, these are respectively

• Bound or polarized surface charge density: ρsP = P · n̂, in [C/m2]
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• Bound or polarized volume charge density: ρvP = ∇ · P, in [C/m3]

Recall that in Maxwell’s equations for the vacuum we have

(3.28)∇ · E =
ρv

ε0
.

Here ρv represents “free” charge density. Adding in potential bound charges we have

(3.29)
∇ · E =

ρv

ε0
+
ρvP

ε0

=
ρv

ε0
−
∇ · P
ε0

.

Rearranging we can write

(3.30)∇ · (ε0E + P) = ρv.

This finally justifies the Maxwell equation

(3.31)∇ · D = ρv,

where D = ε0E + P.
Assuming a relationship between the polarization vector and the electric field of the form

(3.32)P = ε0χeE,

possibly a tensor relationship. The bound charges in the material are seen to related the dis-
placement current and the electric field

(3.33)

D = ε0E + P
= ε0E + ε0χeE,
= ε0 (1 + χe) E,
= ε0εrE,
= εE.

Question: Think about why do we ignore the surface charges here? Answer: we are not con-
sidering boundaries... they are at infinity.
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3.1 problems

Exercise 3.1 Electric Dipole.

An electric dipole is shown in fig. 3.6.

Figure 3.6: Electric dipole configuration.

a. Find the Potential V at an arbitrary point A.

b. Calculate the field E from the above potential.
(show that it is the same result we obtained in the class).

Answer for Exercise 3.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 3.2 Dipole moment density for disk.
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A dielectric circular disk of radius a and thickness d is permanently polarized with a dipole
moment per unit volume P [C/m2], where |P| is constant and parallel to the disk axis (z-axis
here) as shown in fig. 3.7.

Figure 3.7: Circular disk geometry.

a. Calculate the potential along the disk axis for z > 0.

b. Approximate the result obtained in part a for the case of Z � d.

Answer for Exercise 3.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 3.3 Field for an electric dipole.

An equal charge dipole configuration is sketched in fig. 3.2. Compute the electric field.
Answer for Exercise 3.3

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.
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. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 3.4 Electric dipole potential

Having shown that

(3.34)E =
1

4πε0r3 (3r̂ (r̂ · p) − p) ,

find the expression for the electric potential for this field.
Answer for Exercise 3.4

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION
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M AG N E T I C M O M E N T, A N D B O U N DA RY VA L U E C O N D I T I O N S

Magnetic moment. Using a semi-classical model of an electron, assuming that the electron
circles the nuclei. This is a completely wrong model, but useful. In reality, electrons are random
and probabilistic and do not follow defined paths. We do however have a magnetic moment
associated with the electron, and one associated with the spin of the electron, and a moment
associated with the spin of the nuclei. All of these concepts can be used to describe a more
accurate model and such a model is discussed in [8] chapters 11,12,13.

Ignoring the details of how the moments really occur physically, we can take it as a given
that they exist, and model them as elemenetal magnetic dipole moments of the form

(4.1)dmi = n̂iIidsi [Am2].

Note that dsi is an element of surface area, not arc length!
Here the normal is defined in terms of the right hand rule with respect to the direction of the

current as sketched in fig. 4.1.

Figure 4.1: Orientation of current loop.

Such dipole moments are actually what an MRI measures. The noises that people describe
from MRI machines are actually when the very powerful magnets are being rotated, allowing
for the magnetic moments in the atoms of the body to be measured in different directions.

The magnetic polarization, or magnetization M, in [A/m]] is given by

29
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(4.2)

M = lim
∆v→0

(
1

∆v
mi

)
= lim

∆v→0

 1
∆v

Nδv∑
i=1

dmi


= lim

∆v→0

 1
∆v

Nδv∑
i=1

n̂iIidsi

 .
In materials the magnetization within the atoms are usually random, however, application of

a magnetic field can force these to line up, as sketched in fig. 4.2.

Figure 4.2: External magnetic field alignment of magnetic moments.

This is accomplished because an applied magnetic field acting on the magnetic moment in-
troduces a torque, as also occured with dipole moments under applied electric fields

(4.3)
τB = dm × Ba

τE = dp × Ea.

There is an energy associated with this torque

(4.4)
∆UB = −dm · Ba

∆UE = −dp · Ea.

In analogy with the electric dipole moment analysis, it can be assumed that there is a linear
relationship between the magnetic polarization and the applied magnetic field

(4.5)B = µ0Ha + µ0M
= µ0 (Ha + M) ,
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where

(4.6)M = χmHa,

so

B = µ0 (1 + χm)Ha ≡ µHa. (4.7)

Like electric dipoles, in a volume, we can have bound currents on the surface [A/m], as well
as bound volume currents [A/m2].

It can be shown, as with the electric dipoles related bound charge densities of eq. (3.27), that
magnetic currents can be defined

(4.8)
Jsm = M × n̂
Jvm = ∇ ×M,

Conductivity We have two constitutive relationships so far

(4.9)
D = εE
B = µH

but this needs to be augmented by

(4.10)Jc = εE.

There are a couple ways to discuss this. One is to model ε as a complex number. Such a model
is not entirely unconstrained. Like with the Cauchy-Riemann conditions that relate derivatives
of the real and imaginary parts of a complex number, there is a relationship (Kramers-Kronig
[10]), an integral relationship that relates the real and imaginary parts of the permittivity ε.

Boundary conditions. The boundary conditions are

• n̂ × (E2 −E1) = −Ms This means that the tangential components of E is continuous
accross the boundary (those components of E1,E2 are equal on the boundary), when Ms

is zero.

Here Ms is the (fictitious) magnetic current density in [V/m].

• n̂ × (H2 −H1) = Js

This means that the tangential components of the magnetic fields H are discontinous
when the electric surface current density Js [A/m] is non-zero, but continuous otherwise.
The latter is sketched in fig. 4.3.

Here Js is the movement of the free current on the surface. The bound charges are incor-
porated into D.
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Figure 4.3: Equal tangential fields.

• n̂ · (D2 −D1) = ρes

Here ρes is the electric surface charge density [C/m2].

This means that the normal component of the electric displacement field D is discon-
tinuous accross the boundary in the presence of electric surface charge densities, but
continuous when that is zero.

• n̂ · (B2 −B1) = ρms

Here ρms is the (fictional) magnetic surface charge density [Weber/m2].

This means that the magnetic fields B are continous in the abscense of (fictional) magnetic
surface charge densities.

In the abscence of any free charges or currents, these relationships are considerably simplified

(4.11a)n̂ × (E2 − E1) = 0

(4.11b)n̂ × (H2 −H1) = 0

(4.11c)n̂ · (D2 − D1) = 0

(4.11d)n̂ · (B2 − B1) = 0

To get an idea where these come from, consider the derivation of eq. (4.11b), relating the
tangential components of H, as sketched in fig. 4.4.

Integrating over such a loop, the integral version of the Ampere-Maxwell equation eq. (1.2),
with J = σE is

(4.12)
∮

C
H · dl =

∫
S
σE · ds +

∂

∂t

∫
S

D · ds.
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Figure 4.4: Boundary geometry.

In the limit, with the height ∆y→ 0, this is

(4.13)
∮

C
H · dl ≈ H1 · (∆xx̂) − H2 · (∆xx̂)

Similarly

(4.14)
∫

S
D · ds ≈ D · ẑ∆x∆y,

and∫
S

J · ds =

∫
S
σE · ds ≈ σE · ẑ∆x∆y, (4.15)

However, if ∆y approaches zero, both of these terms are killed.
This gives

(4.16)x̂ · (H2 −H1) = 0.

If you were to perform the same calculation using a loop in the y-z plane you’d find

(4.17)ẑ · (H2 −H1) = 0.

Either way, the tangential component of H is continous on the boundary.
This derivation, using explicit components, follows [2]. Non coordinate derivations are also

possible (reference?).
The idea is that
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(4.18)n̂ × ((H2 −H2n) − (H1 −H1n)) = n̂ × (H2 −H1)
= 0.

What if there is a surface current?

(4.19)lim
∆y→0

Jic∆y = Js.

When this is the case the J = σE needs to be fixed up a bit, and showing how is left to a
problem.

In the notes the other boundary relations are derived. The normal ones follow by integrating
over a pillbox volume.

Variations include the cases when one of the surfaces is made a perfect conductor. Such a
case can be treated by noting that the E field must be zero.

Conducting media. It will be left to homework to show, using the continuity equation and
Gauss’s law that inside a conductor, that free charges distribute themselves exclusively on the
surface on the medium. Because of this there is no electric field inside the medium (Gauss’s
law). What does this imply about the magnetic field in the same medium. We must have

(4.20)∇ × E = −
∂B
∂t

so if E is zero in the medium the magnetic field must be either constant with respect to time,
or zero. In a general electrodynamic configuration, both the magnetic and electric fields vary
with time, which seems to imply that B must be zero if E is zero in that space.

However, this is not consistent with what we see with an iron core inductor. In such an
inductor, the iron is used to concentrate the magnetic field. Clearly we have magnetic fields in
the iron bar, since that is the purpose of it being there. It turns out that if the frequencies are
low enough (and even some smaller GHz frequencies are), then we can consider the system to
be quasi-electrostatic, with zero electric fields inside a conductor, yet with finite approximately
time independent magnetic fields. As the frequencies are increased, the magnetic fields are
forced out of the conductor into the surrounding space.

The transition point that defines the boundary between electrostatic and quasi-electrostatic
will depend on the precision desired.

Boundary conditions with zero magnetic fields in a conductor For many calculations, we can
proceed with the assumption that there are no appreciable electric nor magnetic fields inside of
a conductor. When that is the case, outside of a conducting medium, we have

(4.21)n̂ × E2 = 0,
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so there is no tangential component to an electric field of a conductor. We also have

(4.22)n̂ · D2 = ρes

Assuming there is also no magnetic field either in the conductor, we also have

(4.23)n̂ ×H2 = Js,

and

(4.24)n̂ · B2 = 0.

There is no normal component to the magnetic field at the surface of a conductor, and the
tangential component is determined by the surface current density.

4.1 problems

Exercise 4.1 Magnetic moment for localized current.

Jackson [8] §5.6 derives an expression for the magnetic moment of a localized current distribu-
tion, far from the source. Repeat this derivation, filling in the details.
Answer for Exercise 4.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 4.2 Vector Area. ([5] pr. 1.61)

The integral

(4.25)a =

∫
S

da,

is sometimes called the vector area of the surface S .

a. Find the vector area of a hemispherical bowl of radius R.
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b. Show that a = 0 for any closed surface.

c. Show that a is the same for all surfaces sharing the same boundary.

d. Show that

(4.26)a =
1
2

�
r × dl,

where the integral is around the boundary line.

e. Show that

(4.27)
�

(c · r) dl = a × c.

Answer for Exercise 4.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 4.3 Tangential magnetic field boundary conditions.

In the class notes we showed that when there were no sources at the interface between two
media and neither of the two media was a perfect conductor σ1, σ2 , ∞ the boundary condition
on the tangential magnetic field was given by

(4.28)n̂ × (H2 −H1) = 0.

Here, show that when Ji + Jc = Jic , 0, the boundary condition is given by

(4.29)n̂ × (H2 −H1) = Js,

where

(4.30)Js = lim
∆y→0

Jic∆y.

Note: Use the geometry provided in fig. 4.5 for your proof.
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Figure 4.5: Boundary geometry.

Answer for Exercise 4.3

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 4.4 Magnetic field for a current loop.

A loop of wire located in x-y plane carrying current I is shown in fig. 4.6. The loop’s radius
is Rl.

a. Calculate the magnetic field flux density, B, along the loop axis at a distance z from its
centre.

b. Simplify the results in part a for large distances along the z-axis (z � Rl).

c. Express the results in part b in terms of magnetic dipole moment. Make sure you write
the expression in vector form.

d. In keeping with your understanding of magnetic bar’s north and south poles, designate
the north and south poles for the current carrying loop shown in the figure.
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Figure 4.6: Current loop.

Hint: Use Biot-Savart law which states the following: A differential current element,
Idl′, produces a differential magnetic field, dB, at a distance R from the current element
given by

(4.31)dB =
µ0

4π
Idl′ × R

R3 ,

or

(4.32)B =
µ0

4π

∫
Idl′ × R

R3 ,

Note that integration is carried over the source (current) and R points from the current
elements to the point of observation.

Answer for Exercise 4.4

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION
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Exercise 4.5 Electric field across dielectric boundary.

The plane 3x + 2y + z = 12 [m] describes the interface between a dielectric and free space.
The origin side of the interface has εr1 = 3 and E1 = 2x̂ + 5ẑ [V/m]. What is E2 (the field on
the other side of the interface)?
Answer for Exercise 4.5

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 4.6 Laplacian form of delta function.

Prove that

(4.33)−∇2 1
r

= 4πδ3(r),

where r = |r| is the position vector.
Answer for Exercise 4.6

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 4.7 Conductor charge distribution on surface.

We have stated that the boundary condition for a perfect conductor is such that there is no
electric field or charge distribution inside of the conductor. Here we will study the dynamics
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of this process. Start with continuity equation ∇ · J = −∂ρ/∂t, where J is the current density
[A/m2] and ρ is the charge density [C/m3]. Show that a charge (charge density) placed inside a
conductor will decay in an exponential manner.
Answer for Exercise 4.7

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 4.8 Magnetic field from moment.

The vector potential, to first order, for a magnetostatic localized current distribution was
found to be

(4.34)A(x) =
µ0

4π
m × x
|x|3

.

Use this to calculate the magnetic field.
Answer for Exercise 4.8

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION



5
P OY N T I N G V E C T O R , A N D T I M E H A R M O N I C ( P H A S O R ) F I E L D S .

Poynting The cross product terms of Maxwell’s equation are

∇ ×E = −Mi −
∂B
∂t

= −Mi −Md, (5.1)

where Md is called the magnetic displacement current here. For the magnetic curl we have

∇ ×H = Ji + Jc +
∂D
∂t

= Ji + Jc + Jd. (5.2)

It is left as an exersize to show that

(5.3)∇ · (E ×H) + H · (Mi + Md) + E · (Ji + Jc + Jd) = 0,

or

(5.4)
∮

da · (E ×H) +

∫
dV (H · (Mi + Md) + E · (Ji + Jc + Jd)) = 0,

or

(5.5)
∮

da · (E×H) +

∫
dVH ·Mi +

∫
dVE · Ji +

∫
dVE · Jc +

∫
dV

(
H ·

∂B
∂t

+ E ·
∂D
∂t

)
= 0.

Define a supplied power density ρsupp

(5.6)−ρsupp =

∫
dVH ·Mi +

∫
dVE · Ji.

When the medium is not dispersive or lossy, we have

(5.7)

∫
dVH ·

∂B
∂t

= µ

∫
dVH ·

∂H
∂t

=
∂

∂t

∫
dVµ|H|2.

The units of [µ|H|2] are W, so one can defined a magnetic energy density µ|H|2, and

(5.8)Wm =

∫
dVµ|H|2,

41
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for

(5.9)
∫

dVH ·
∂B
∂t

=
∂Wm

∂t
.

This is the rate of change of stored magnetic energy [J/s = W].
Similarly

(5.10)

∫
dVE ·

∂D
∂t

= ε

∫
dVE ·

∂E
∂t

=
∂

∂t

∫
dVε |E|2.

The electric energy density is ε|E|2. Let

(5.11)We =

∫
dVε|E|2,

and

(5.12)
∫

dVE ·
∂D
∂t

=
∂We

∂t
.

We also have a term

(5.13)

∫
dVE · Jc =

∫
dVE · (σE)

=

∫
dVσ|E|2

This is the rate of change of stored electric energy.
The remaining term is

(5.14)
∮

da · (E ×H)

This is a density of the power that is leaving the volume. The vector E ×H is special, called
the Poynting vector, and coincidentally points in the direction that the energy leaves the bound-
ing surface per unit time. We write

(5.15)S = E ×H.

In vacuum the phase velocity vp, group velocity vg and packet(?) velocity vp all line up. This
isn’t the case in the media.

It turns out that without dissipation
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Figure 5.1: LC circuit.

(5.16)
∫

H ·
∂B
∂t

=

∫
E ·

∂D
∂t
.

For example in an LC circuit fig. 5.1 half the cycle the energy is stored in the inductor, and
in the other half of the cycle the energy is stored in the capacitor.

Summarizing

(5.17)
∮

(E ×H) · da = Pexit.

Time harmonics Recall that we have differential equations to solve for each type of circuit
element in the time domain. For example in fig. 5.2, we have

(5.18)Vi(t) = L
di
dt
,

Figure 5.2: Inductor.

and for the capacitor sketched in fig. 5.3, we have

(5.19)ic(t) = C
dVc

dt
.
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Figure 5.3: Capacitor.

When we use Laplace or Fourier techniques to solve circuits with such differential equation
elements. The price that we paid for that was that we have to start dealing with complex-valued
(phasor) quantities. We can do this for field equations as well. The goal is to remove the time
domain coupling in Maxwell equations like

(5.20)∇ × E(r, t) = −
∂B
∂t

(r, t)

(5.21)∇ ×H(r, t) = σE +
∂D
∂t

(r, t).

For a single frequency, assume that the time dependency can be written as

(5.22)E(r, t) = Re
(
E∗(r)e jωt

)
.

We may now have to require E(r) to be complex valued. We also have to be really careful
about which convention of the time domain solution we are going to use, since we could just as
easily use

(5.23)E(r, t) = Re
(
E(r)e− jωt

)
.

For example

(5.24)Re(eikze−iωt) = cos(kz − ωt),

is identical with

(5.25)Re(e− jkze jωt) = cos(ωt − kz),

showing that a solution or its complex conjugate is equally valid.
Engineering books use e jωt whereas most physicists use e−iωt.
What if we have more complex time dependencies, such as that sketched in fig. 5.4?
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Figure 5.4: Non-sinusoidal time dependence.

We can do this using Fourier superposition, adding a finite or infinite set of single frequency
solutions. The first order of business is to solve the system for a single frequency.

Let’s write our Fourier transform pairs as

F(A(r, t)) = A(r, ω) =

∫ ∞

−∞

A(r, t)e− jωtdt (5.26a)

A(r, t) = F−1(A(r, ω)) =
1

2π

∫ ∞

−∞

A(r, ω)e jωtdω. (5.26b)

In particular

F

(
d f (t)

dt

)
= jωF(ω), (5.27)

so the Fourier transform of the Maxwell equation

(5.28)F (∇ × E(r, t)) = F

(
−
∂B
∂t

(r, t)
)
,

is

(5.29)∇ × E(r, ω) = − jωB(r, ω).

The four Maxwell’s equations can be written as

• Faraday’s Law

(5.30)∇ × E(r, ω) = − jωB(r, ω) −Mi

• Ampere-Maxwell equation

(5.31)∇ ×H(r, ω) = Jc(r, ω) + D(r, ω)
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• Gauss’s law

(5.32)∇ · D(r, ω) = ρev(r, ω)

• Gauss’s law for magnetism

(5.33)∇ · B(r, ω) = ρmv(r, ω).

Now we can more easily model non-simple media with

(5.34)
B(r, ω) = µ(ω)H(r, ω)

D(r, ω) = ε(ω)E(r, ω).

so Maxwell’s equations are

(5.35)∇ × E(r, ω) = − jωµ(ω)H(r, ω) −Mi

(5.36)∇ ×H(r, ω) = Jc(r, ω) + ε(ω)E(r, ω)

(5.37)ε(ω)∇ · E(r, ω) = ρev(r, ω)

(5.38)µ(ω)∇ ·H(r, ω) = ρmv(r, ω).

Frequency domain Poynting The frequency domain (time harmonic) equivalent of the instan-
taneous Poynting theorem is

1
2

∮
da ·

(
E×H∗

)
−

1
2

∫
dV

(
H∗ ·Mi + E · J∗i

)
+

1
2

∫
dVσ|E|2 + jω

1
2

∫
dV

(
µ|H|2 − ε|E|2

)
= 0.

(5.39)

Showing this is left as an exersize. Since

(5.40)Re(A) × Re(B) , Re(A × B).

We want to find the instantaneous Poynting vector in terms of the phasor fields. Following
[2], where script is used for the instantaneous quantities and non-script for the phasors, we find

(5.41)

S(r, t) = E(r, t) ×H(r, t)
= Re(E(r, t)) × Re(H(r, t))

=
Ee jωt + E∗e− jωt

2
×

He jωt + H∗e− jωt

2

=
1
4

(
E ×H∗ + E∗ ×H + E ×He2 jωt + H × Ee−2 jωt

)
=

1
2

Re(E ×H∗) +
1
2

Re(E ×He2 jωt).
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Should we time average over a period 〈.〉 = (1/T )
∫ T

0 (.) the second term is killed, so that

(5.42)〈S〉 =
1
2

Re(E ×H∗) +
1
2

Re(E ×He2 jωt).

The instantaneous Poynting vector is thus

(5.43)S(r, t) = 〈S〉 +
1
2

Re
(
E ×He jωt

)
.

5.1 problems

Exercise 5.1 Index of refraction.

Transmitter T of a time-harmonic wave of frequency ν moves with velocity U at an angle θ
relative to the direct line to a stationary receiver R, as sketched in fig. 5.5.

Figure 5.5: Field refraction.

a. Derive the expression for the frequency detected by the receiver R, assuming that the
medium between T and R has a positive index of refraction n. (Apply the appropriate
approximations.)

b. How is the expression obtained in part a is modified if the medium is a metamaterial
with negative index of refraction.

c. From the physical point of view, how is the situation in part b different from part a ?

Answer for Exercise 5.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
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. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 5.2 Phasor equality.

Prove that if

(5.44)Re
(
A(r)e jωt

)
= Re

(
B(r)e jωt

)
,

then A(r) = B(r). This means that the Re() operator can be removed on phasors of the same
frequency.
Answer for Exercise 5.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 5.3 Duality theorem.

Prove that if the time-harmonic fields E(r) and H(r) are solutions to Maxwell’s equations in
a simple, source free medium ( Mi = Ji = Jc = 0, ρmv = ρev = 0 ), characterized by ε, µ ; then
E′(r) = ηH(r) and H′(r) = −

E(r)
η are also solutions of the Maxwell equations. η is the intrinsic

impedance of the medium.

Remark : By showing the above you have proved the validity of the so called duality theorem.
Answer for Exercise 5.3

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .
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.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 5.4 Poynting theorem

Using Maxwell’s equations given in the class notes, derive the Poynting theorem in both
differential and integral form for instantaneous fields. Assume a linear, homogeneous medium
with no temporal dispersion.
Answer for Exercise 5.4

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 5.5 Frequency domain time averaged Poynting theorem

The time domain Poynting relationship was found to be

(5.45)0 = ∇ · (E ×H) +
ε

2
E ·

∂E
∂t

+
µ

2
H ·

∂H
∂t

+ H ·Mi + E · Ji + σE · E.

Derive the equivalent relationship for the time averaged portion of the time-harmonic Poynt-
ing vector.
Answer for Exercise 5.5

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .
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. .
. . .

. .
. .

. END-REDACTION

Lorentz-Lorenz Dispersion We will model the medium using a frequency representation of
the permittivity

(5.46)
ε(ω) = ε′(ω) − jε′′(ω)

µ(ω) = µ′(ω) − jµ′′(ω)

The real part is the phase, whereas the imaginary part is the loss.

(5.47)

n =
c
v

=

√
εµ

√
ε0µ0

=
√
εrµr

We can also write

(5.48)n(ω) = n′(ω) − jn′′(ω)

If we are considering an electric dipole

(5.49)Pi = Qixi

With

(5.50)P = ε0χeE,

and a time harmonic representation for the electric field

(5.51)E = E0e jωt.

The dipole moment is assumed to be

(5.52)

P = lim
∆v→0

∑N∆v
i=1 Pi

∆v

=
N∆vp

∆v
= Np
= NQx.
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We model the oscillating electron and nucleus as a mass and spring. This electron oscillator
model is often called the Lorentz model. It is not really a model for atoms as such, but the way
that an atom responds to pertubation. At the time when Lorentz formulated the model it was not
known that the nuclei havr massive mass as compared to the electrons. The Lorentz assumption
was that in the absence of applied eletric fields the centroids of positive and neagivve charges
coincide, but when a field is applied, the electrons will experience a Lorentz force and will be
displaced from their equilibrium position. The wrote “the displacement immediately gives rise
to a new force by which the particle is pulled back towards its original position, and which we
may therefore appropriately distinguish by the name of elastic force.”

The forces of interest are

(5.53)

Ffriction = −D
dx
dt

= −Dv

Felastic = −S x

Fexternal = QE = QE0e jωt

Adding all the forces, the electrical system, in one dimension, can be assumed to have the
form

F = m
d2x
dt2 = −D

dx
dt
− Dv − S x + QE0e jωt, (5.54)

or

(5.55)
d2x
dt2 +

D
m

dx
dt

+
S
m

x =
QE0

m
e jωt

Let’s define

(5.56)
γ =

D
m

ω2
0 =

S
m
,

so that

(5.57)
d2x
dt2 + γ

dx
dt

+ ω2
0x =

QE0

m
e jωt.

Calculating the permittivity and susceptibility With x = x0e jωt we have

(5.58)x0
(
−ω2 + jγω + ω2

0

)
=

QE0

m
,

or (with E = E0e jωt), just

x = x0e jωt =
QE

m
(
−ω2 + jγω +ω2

0

) . (5.59)
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I Assume that dipoles are identical

II Assume no coupling between dipoles

III There are N dipoles per unit volume. In other words, N is the number of dipoles per unit
volume.

The polarization P(t) is given by
(5.60)P(t) = NQx,

where Q is the charge associate with the unit dipole. This has dimensions of [ 1
m3 ×C ×m], or

[C/m2]. This polarization is

(5.61)P(t) =
Q2NE/m

ω2
0 − ω

2 + jγω
.

In particular, the ratio of the polarization to the electric field magnitude is

(5.62)
P
E

=
Q2N/m

ω2
0 − ω

2 + jγω
.

With P = ε0χeE, we have

(5.63)χe =
Q2N/mε0

ω2
0 − ω

2 + jγω
.

Define

(5.64)ω2
p =

Q2N
mε0

,

which has dimensions [1/s2]. Then

(5.65)χe =
ω2

p

ω2
0 − ω

2 + jγω
.

With εr = 1 + χe we have

εr =
ε

ε0
= 1 +

ω2
p

ω2
0 −ω

2 + jγω
. (5.66)

One can show that εr = ε′r − jε′′r are given bby

(5.67)ε′r =
ω2

p

(
ω2

0 − ω
2
)

(ω2
0 − ω

2)2 + (ωγ)2
+ 1,

(5.68)ε′′r =
ω2

pωγ

(ω2
0 − ω

2)2 + (ωγ)2
.

FIXME: calculate this.
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No damping With D = 0, or γ = 0 then ε′′r = 0,

(5.69)x =
QE0/m
ω2 − ω2 e jωt,

and

εr = ε′r =
ε

ε0
= 1 +

ω2
p

ω2
0 −ω

2
. (5.70)

This has a curve like fig. 5.6.

Figure 5.6: Undamped resonance.

instead of the normal damped resonance curve like fig. 5.7.
As ω → ω0, then the displacement x → ∞. The frequency ω0 is called the resonance fre-

quency of the system.
If the resonance frequency is zero (free charges), then

(5.71)
εr = ε′r

= 1 −
ω2

p

ω2 ,

which is negative for ωp > ω.
When damping is present, the resonance frequency is the root of the characteristic equation

of the homogeneous part of eq. (5.55).
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Figure 5.7: Damped resonance.

Multiple resonances When there are N molecules per unit volume, and each molecule has Z
electrons per molecule that have a binding frequency ωi and damping constant γi, then it can be
shown that

(5.72)εr = 1 +
QN2

mε0

∑ fi
ω2

0 − ω
2 + jγω

A quantum mechanical derivation of the transition frequencies is used to derive this multiple
resonance result.

5.2 problems

Exercise 5.6 Passive medium.

Parameters for AlGaN (a passive medium) are given as

(5.73)

ω0 = 1.921 × 1014rad/s

ωp = 3.328 × 1014rad/s

γ = 9.756 × 1012rad/s

Assuming Lorentz model:

a. Plot the real and imaginary parts of the index of refraction for the range of ω = 0 to
ω = 6 × 1014. On the figure identify the region of anomalous dispersion.

b. Plot the real and imaginary parts of the relative permittivity for the same range as in part
a.
On the figure identify the region of anomalous dispersion.
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Answer for Exercise 5.6

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 5.7 Medium with multiple resonances.

Relative permittivity for a medium with multiple resonances is given by:

εr = 1 + χe = 1 +
∑
k=1

ωp,k

ω2
0,k −ω

2 + jγkω
(5.74)

Moreover, the case of an active medium (i.e. medium with gain) can be modeled by allowing
ωp,k in above to become purely imaginary. Under these conditions, plot

(5.75)Re (n(ω)) − 1,

and

(5.76)Im (n(ω))

as a function of detuning frequency,

(5.77)ν =
ω − ωc

2π
,

for ammonia vapor (an active medium) where

(5.78)

ω0,1 = 2.4165825 × 1015rad/s

ω0,2 = 2.4166175 × 1015rad/s

ωp,k = ωp = 1010rad/s

γk = γ = 5 × 109rad/s

(ω − ωc)/2π ∈ [−7, 7]GHz

ωc = 2.4166 × 1015rad/s



56 poynting vector , and time harmonic (phasor) fields .

Answer for Exercise 5.7
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 5.8 Susceptibility kernel.

a. Assuming that a medium is described by the time harmonic relationship D(x, ω) =

ε(ω)E(x,ω), show that the time domain relation between the electric flux density D
and the electric field E is given by,

(5.79)D(x, t) = ε0

(
E(x, t) +

∫ ∞

−∞

G(τ)E(x, t − τ)dτ,
)

where G(τ) is the susceptibility kernel given by

(5.80)G(τ) =
1

2π

∫ ∞

−∞

(
ε(ω)
ε0
− 1

)
e− jωtdτ.

b. Show that
(5.81)ε(−ω) = ε∗(ω)

c. Show that for ε(ω) = ε′(ω) + jε′′(ω), ε′(ω) is even and ε′′(ω) is odd.

Answer for Exercise 5.8
PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE

FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.
. .

. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION
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D RU I D M O D E L

Disclaimer. These notes are mostly a direct transcription of Prof. M. Mojahedi’s handwritten
notes on this topic, mostly skipped over in class. These become relevant because this is used in
the non-vacuum model of Maxwell’s equations.

A nice vector based derivation of these Druid model results can be found in [1]. The Meissner
effect is also discussed in that context.

Druid model In this section we will investigate the optical properties of free electrons, or
what is commonly called free electron gas.

By free electron gas we mean electrons that do not experience the restoring force which
we considered for bound charges in the case of Lorentz model. In particular, the resonance
frequency ω0 for free electrons is zero.

There are two typical cases of free electron systems

a Metals.

b Doped (n or p type) semiconductors.

For the moment we consider the case of metals.
Free electrons are responsible for high reflectivity and good thermal conductivity of metals

up to optical frequencies. A model that can be used to describe the high reflectivity of metals is
the Drude model.

Plasma: A neutral gas of free electrons and heavy ions is called plasma. Examples of plasma
are metals and doped semiconductors, since these materials are a combination of free electrons
and heavy ions which are, in sum, electrically neutral.

Drude-Lorentz model , (or Drude model for short): similar to the case of bound charges
we already studied for free electron plasma, we can start with a harmonic oscillator model.
However, in this case, since electrons are free, there is no restoring force (i.e. ω0 = 0. Recall
that in the spring mass model ω2

0 = S/m where S was the spring tension coefficient.
With such a model the Lorentz model equation

(6.1)
d2x
dt2 + γ

dx
dt

+ ω2
0x =

QE0

m
e jωt,

57
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is reduced to

(6.2)
d2x
dt2 + γ

dx
dt

=
QE0

m
e jωt,

Again, assuming a solution of the form xp = x0e jωt for the particular solution and substituting
in eq. (6.2), we have

(6.3)x0
(
( jω)2 + γ( jω)

)
=

QE0

m
,

or

(6.4)x =
QE/m
−ω2 + jγω

,

Once more assuming identical particles that are not coupled and a linear isotropic medium
and using the fact that P = Np = NQx, and

(6.5)χe =
|P|
ε0|E|

,

we have

(6.6)χe =
Q2N/mε0

−ω2 + jγω
,

or with ω2
p = Q2N/mε0,

(6.7)
εr = 1 + χe

= 1 +
ω2

p

−ω2 + jγω
.

Plasma frequency, ωp, can be understood as the natural resonance frequency by which the
free electron gas (plasma) collectively (not individual electrons ) oscillates.

Note that if we neglect the last term, i.e., let γ = 0 then

(6.8)εr = 1 −
ω2

p

ω2 .

From this it is clear that when ω < ωp, we have εr < 1 and n =
√
εr is purely imaginary, and

the wave attenuates inside the electron plasma.
This means that for ω < ωp electromagnetic waves do not propagate a large distance inside

of metal. However, for ω > ωp the electron plasma (e.g. metal) is transparent. The latter is
called ultraviolet transparency of metal, because for most metals ωp is in the ultraviolet part of
the spectrum. For example,
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• For Al

(6.9)
ωp

2π
= 3.82 × 1015Hz

=⇒ λp

= 79[nm],

• For Au

(6.10)
ωp

2π
= 5.9 × 1015Hz

=⇒ λp

= 138[nm],

Using eq. (6.8) one can calculate

(6.11)ñ =
√
εr,

and plot the reflectivity R at normal incidence

(6.12)R =

∣∣∣∣∣ ñ − 1
ñ + 1

∣∣∣∣∣,
which will have a shape similar to that of fig. 6.1.

Figure 6.1: Metal reflectivity.

This figure shows that for ω/ωp � 1 metal reflects most of the incident light, whereas it
becomes transparent (it transmits light) for ω/ωp � 1. This explains the shiny appearance of
the metal at optical wavelengths.
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The fact that plasma reflects EM waves below a ωp frequency can be used to transmit AM
radio waves. The ionosphere can be viewed as a plasma gas due to free electrons generated
by cosmic radiation and ultraviolet light from the sun. The ωp for ionosphere plasma is ωp =

O(1MHz). Therefore AM signals modulated at frequencies below or in the range of a MHz will
be reflected from the ionosphere. But FM signals where the modulation frequency is greater
than MHz will not be reflected, but will travel through the ionosphere and into space.

Conductivity

(6.13)

∇ ×H(r, ω) = σE(r, ω) + jωε0E(r, ω)

= jωε0

(
1 +

σ

jωε0

)
E(r, ω)

= jωε0

(
1 −

jσ
ωε0

)
E(r, ω)

This complex factor is the relative permittivity

(6.14)εr = 1 −
jσ
ωε0

,

and is why we write

(6.15)ε(ω) = ε′(ω) − jε′′(ω)

6.1 problems
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WAV E E Q UAT I O N

Wave equation

(7.1)

∇ × E = −
∂B

∂t
−M

∇ ×H =
∂D

∂t
+ J

∇ ×B = ρmv

∇ ×D = ρev

Using an expansion of the triple cross product in terms of the Laplacian

(7.2)∇ × (∇ × f) = −∇ · (∇ ∧ f)
= −∇2f + ∇ (∇ · f) ,

we can evaluate the cross products

(7.3)
∇ × (∇ × E) = ∇ ×

(
−
∂B

∂t
−M

)
∇ × (∇ ×H) = ∇ ×

(
∂D

∂t
+ J

)
,

or

(7.4)
−∇2E + ∇ (∇ · E) = −µ

∂

∂t
∇ ×H − ∇ ×M

−∇2H + ∇ (∇ ·H) = ε
∂

∂t
(∇ × E) + ∇ × J,

or

(7.5)
−∇2E +

1
ε
∇ρev = −µ

∂

∂t

(
∂D

∂t
+ J

)
− ∇ ×M

−∇2H +
1
µ
∇ρmv = ε

∂

∂t

(
−
∂B

∂t
−M

)
+ ∇ × J,

This decouples the equations for the electric and the magnetic fields

61
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(7.6)
∇

2E = µε
∂2E

∂t2 +
1
ε
∇ρev + µ

∂J

∂t
+ ∇ ×M

∇
2H = εµ

∂2H

∂t2 +
1
µ
∇ρmv + ε

∂M

∂t
− ∇ × J,

Splitting the current between induced and bound (?) currents

J = Ji +Jc = Ji +σE, (7.7)

these become

(7.8)
∇

2E = µε
∂2E

∂t2 +
1
ε
∇ρev + µσ

∂E

∂t
+ ∇ ×M + µ

∂Ji

∂t

∇
2H = εµ

∂2H

∂t2 +
1
µ
∇ρmv + ε

∂M

∂t
+ σµ

∂H

∂t
+ σM − ∇ × Ji.

Time harmonic form Assuming time harmonic dependence X = Xe jωt, we find

(7.9)
∇

2E =
(
−ω2µε + jωµσ

)
E +

1
ε
∇ρev + ∇ ×M + jωµJi

∇
2H =

(
−ω2εµ + jωσµ

)
H +

1
µ
∇ρmv + ( jωε + σ)M − ∇ × Ji.

For a lossy medium where ε = ε′ − jωε′′, the leading term factor is

(7.10)−ω2µε + jωµσ = −ω2µε′ + jωµ
(
σ + ωε′′

)
.

With the definition

γ2 = (α + jβ)2
= −ω2µε′ + jωµ (σ +ωε′′) , (7.11)

the wave equations have the form

(7.12)
∇

2E = γ2E +
1
ε
∇ρev + ∇ ×M + jωµJi

∇
2H = γ2H +

1
µ
∇ρmv + ( jωε + σ)M − ∇ × Ji.

Here

• α is the attenuation constant [Np/m]

• β is the phase velocity [rad/m]

• γ is the propagation constant [1/m]

We are usually interested in solutions in regions free of magnetic currents, induced electric
currents, and free of any charge densities, in which case the wave equations are just

(7.13)
∇

2E = γ2E
∇

2H = γ2H.
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7.1 problems

Exercise 7.1 Meissner effect.

The constitutive relation for superconductors in weak magnetic fields can be macroscopically
characterized by the first London equation

(7.14)
∂Jsup

∂t
= αE,

and the second London equation

(7.15)∇ × Jsup = −α1B,

where Jsup stands for the superconducting current, α = nsq2/m and α1 ≈ α, with ns, m, and
q denoting, respectively, the number density, the effective mass, and the charge of the Cooper
pairs responsible for the superconductivity in a charged Boson fluid model.

a. From the first London equation, derive and equation for Ḃ = ∂B/∂t by using the static
Maxwell equation ∇ ×H = Jsup without the displacement current. Show that

(7.16)∇
2Ḃ = µ0αḂ

b. From the second London equation and the Ampere’s law stated above derive an equation
for B.

c. What are the penetration depths in the part a and part b cases? Justify your answer.

Remark: from above analysis we see that both the current and magnetic field are
confined to a thin layer of the order of the penetration depth which is very small. The
exclusion of static magnetic field in a superconductor is known as the Meissner effect
experimentally discovered in 1933.

Answer for Exercise 7.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION
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In class, we walked through splitting up the wave equation into components, and separation of
variables. I didn’t take notes on that.

Winding down that discussion, however, was a mention of phase and group velocity, and a
phenomina called superluminal velocity. This latter is analogous to quantum electron tunneling
where a wave can make it through an aperature with a damped solution e−αx in the aperature
interval, and sinuoidal solutions in the incident and transmitted regions as sketched in fig. 8.1.
The time τ to get through the aperature is called the tunnelling time.

Figure 8.1: Superluminal tunneling.

8.1 problems

Exercise 8.1 Lossy waves.

In the case of lossy medium the wave equation was given by

(8.1)∇
2E = γ2E,

where

(8.2)γ2 = (α + jβ)2 .

65
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Now consider a medium for which ε(ω) = ε′(ω) (i.e. ε′′(ω) = 0), σ = σ0 (i.e. ωτ ∼ 0 in the
Drude model), and µ is a constant and real. For this case obtain the expression for α and β in
terms of ω, µ, ε′, σ0.
Answer for Exercise 8.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 8.2 Uniform plane wave.

Note: This seemed like a separate problem, and has been split out from the problem 2 as
specified in the original problem set handout.

The uniform plane wave

(8.3)E(r, t) = E0 (x̂ cos θ − ẑ sin θ) cos (ωt − k sin θx − k cos θz)

is propagating in the x− z plane as sketched in fig. 8.2 in a simple medium with σ = 0. Here,

Figure 8.2: Linear wave front.
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E0 is a real constant and k is the propagation constant. Answer the following questions and
show all your work.

a. Determine the associated magnetic field H(r, t).
b. Determine the time averaged Poynting vector, 〈S(r, t)〉.
c. Determine the stored magnetic energy density, Wm(r, t).
d. Determine the components of phase velocity vector vp along x and z.

Answer for Exercise 8.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION
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Cylindrical coordinates Seek a function

(9.1)E = Eρρ̂ + Eφφ̂ + Ezẑ

solving

(9.2)∇
2E = −β2E.

One way to find the Laplacian in cylindrical coordinates is to use

(9.3)∇
2E = ∇ (∇ · E) − ∇ × (∇ × E) ,

where

(9.4)∇ = ρ̂
∂

∂ρ
+
φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z
.

It can be shown that:

(9.5)∇ · E =
1
ρ

∂

∂ρ

(
ρEρ

)
+

1
ρ

∂Eφ

∂φ
+
∂Ez

∂z

and

(9.6)∇ × E = ρ̂

(
1
ρ
∂φEz − ∂zEφ

)
+ φ̂

(
∂zEρ − ∂ρEz

)
+ ẑ

(
1
ρ
∂ρ(ρEφ) −

1
ρ
∂φEρ

)
This gives

(9.7)∇
2ψ =

∂2ψ

∂ρ2 +
1
ρ

∂ψ

∂ρ
+

1
ρ2

∂2ψ

∂φ2 +
∂2ψ

∂z2 .

and

(9.8)

∇
2Eρ =

(
−

Eρ

ρ2 −
2
ρ2

∂Eφ

∂φ

)
∇

2Eφ =

(
−

Eφ

ρ2 +
2
ρ2

∂Eρ

∂φ

)
∇

2Ez = −β2Eφ.

This is explored in appendix F.
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TEM: If we want to have a TEM mode it can be shown that we need an axial distribution
mechanism, such as the core of a co-axial cable.

These are messy to solve in general, but we can solve the z-component without too much
pain

(9.9)
∂2Ez

∂ρ2 +
1
ρ

∂Ez

∂ρ
+

1
ρ2

∂2Ez

∂φ2 +
∂2Ez

∂z2 = −β2Ez

Solving this using separation of variables with

(9.10)Ez = R(ρ)P(φ)Z(z)

(9.11)
1
R

(
R′′ +

1
ρ

R′
)

+
1
ρ2P

P′′ +
Z′′

Z
= −β2

Assuming for some constant βz that we have

(9.12)
Z′′

Z
= −β2

z ,

then

(9.13)
1
R

(
ρ2R′′ + ρR′

)
+

1
P

P′′ + ρ2
(
β2 − β2

z

)
= 0

Now assume that

(9.14)
1
P

P′′ = −m2,

and let β2 − β2
z = β2

ρ, which leaves

(9.15)ρ2R′′ + ρR′ +
(
ρ2β2

ρ − m2
)

R = 0.

This is the Bessel differential equation, with travelling wave solution

(9.16)R(ρ) = AH(1)
m (βρρ) + BH(2)

m (βρρ),

and standing wave solutions

(9.17)R(ρ) = AJm(βρρ) + BYm(βρρ).

Here H(1)
m ,H(2)

m are Hankel functions of the first and second kinds, and Jm,Ym are the Bessel
functions of the first and second kinds.

For P(φ)

(9.18)P′′ = −m2P
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Waves

• The field is a modification of space-time

• Mode is a particular field configuration for a given boundary value problem. Many field
configurations can satisfy Maxwell equations (wave equation). These usually are referred
to as modes. A mode is a self-consistent field distribution.

• In a TEM mode, E and H are every point in space are constrained in a local plane, inde-
pendent of time. This plane is called the equiphase plane. In general equiphase planes are
not parallel at two different points along the trajectory of the wave.

9.1 problems

Exercise 9.1 Spherical wave solutions. (2016 ps7.)

Suppose under some circumstances (e.g. TEr or TMr modes), the partial differential equations
for the wavefunction ψ can further be simplified to

(9.19)∇
2ψ(r, θ, φ) = −β2ψ(r, θ, φ).

Using separation of variables

(9.20)ψ(r, θ, φ) = R(r)T (θ)P(φ),

find the differential equations governing the behaviour of R,T, P. Comment on the differential
equations found and their possible solutions.

Remarks : To have a more uniform answer, making it easier to mark the questions, use the
following conventions (notations) in your answer.

• Use −m2 as the constant of separation for the differential equation governing P(φ).

• Use −n(n + 1) as the constant of separation for the differential equation governing T (θ).

• Show that R(r) follows the differential equation associated with spherical Bessel or Han-
kel functions.

Answer for Exercise 9.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
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. .
.

. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 9.2 Orthogonality conditions for the fields.

Consider plane waves

(9.21)
E = E0e− jk·r+ jωt

H = H0e− jk·r+ jωt

propagating in a homogeneous, lossless, source free region for which ε > 0, µ > 0, and where
E0,H0 are constant.

a. Show that k ⊥ E and k ⊥ H.

b. Show that k,E,H form a right hand triplet as indicated in fig. 9.1.

Figure 9.1: Right handed triplet.

Hint: show that k ×E = ωµH and k ×H = −ωεE.

c. Now suppose ε, µ < 0, how does the figure change? Redraw the figure.

Answer for Exercise 9.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .
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. .
. . .

. .
. .

. END-REDACTION
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Q UA D RU P O L E E X PA N S I O N

Quadropole potential In Jackson [8] , is the following

(10.1)
1

|x − x′|
= 4π

∞∑
l=0

l∑
m=−l

1
2l + 1

(r′)l

rl+1 Y∗l,m(θ′, φ′)Yl,m(θ, φ),

where Yl,m are the spherical harmonics. It appears that this is actually just an orthogonal
function expansion of the inverse distance (for a region outside of the charge density). The
proof of this in is scattered through chapter 3, dependent on a similar expansion in Legendre
polynomials, for an the azimuthally symmetric configuration.

It looks like quite a project to get comfortable enough with these special functions to fully
reproduce the proof of this identity. We are forced to play engineer, and assume the mathematics
works out. If we do that and plug this inverse distance formula into the potential we have

(10.2)

φ(x) =
1

4πε0

∫
ρ(x′)d3x′

|x − x′|

=
1

4πε0

∫
ρ(x′)d3x′

4π ∞∑
l=0

l∑
m=−l

1
2l + 1

(r′)l

rl+1 Y∗l,m(θ′, φ′)Yl,m(θ, φ)


=

1
ε0

∞∑
l=0

l∑
m=−l

1
2l + 1

∫
ρ(x′)d3x′

(
(r′)l

rl+1 Y∗l,m(θ′, φ′)Yl,m(θ, φ)
)

=
1
ε0

∞∑
l=0

l∑
m=−l

1
2l + 1

(∫
(r′)lρ(x′)Y∗l,m(θ′, φ′)d3x′

)
Yl,m(θ, φ)

rl+1

The integral terms are called the coefficients of the multipole moments, denoted

(10.3)ql,m =

∫
(r′)lρ(x′)Y∗l,m(θ′, φ′)d3x′,

The l = 0, 1, 2 terms are, respectively, called the monopole, dipole, and quadropole terms of
the potential

(10.4)ρ(x) =
1

4πε0

∞∑
l=0

l∑
m=−l

4π
2l + 1

ql,m
Yl,m(θ, φ)

rl+1 .

Note the power of this expansion. Should we wish to compute the electric field, we have only
to compute the qradient of the last (Yl,mr−l−1) portion (since ql,m is a constant).
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(10.5)

q1,1 = −

∫ √
3

8π
sin θ′e−iφ′r′ρ(x′)dV ′

= −

√
3

8π

∫
sin θ′

(
cos φ′ − i sin φ′

)
r′ρ(x′)dV ′

= −

√
3

8π

(∫
x′ρ(x′)dV ′ − i

∫
y′ρ(x′)dV ′

)
= −

√
3

8π

(
px − ipy

)
.

Here we’ve used

(10.6)

x′ = r′ sin θ′ cos φ′

y′ = r′ sin θ′ sin φ′

z′ = r′ cos θ′

and the Y11 representation

(10.7)

Y00 = −

√
1

4π

Y11 = −

√
3

8π
sin θeiφ

Y10 =

√
3

4π
cos θ

Y22 = −
1
4

√
15
2π

sin2 θe2iφ

Y21 =
1
2

√
15
2π

sin θ cos θeiφ

Y20 =
1
4

√
5
π

(
3 cos2 θ − 1

)
With the usual dipole moment expression

(10.8)p =

∫
x′ρ(x′)d3x′,

and a quadropole moment defined as

(10.9)Qi, j =

∫ (
3x′i x

′
j − δi j(r′)2

)
ρ(x′)d3x′,

the first order terms of the potential are now fully specified

(10.10)φ(x) =
1

4πε0

q +
p · x
r3 +

1
2

∑
i j

Qi j
xix j

r5

 .
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Explicit moment and quadrupole expansion We calculated the q1,1 coefficient of the elec-
trostatic moment, as covered in [8] chapter 4. Let’s verify the rest, as well as the tensor sum
formula for the quadrupole moment, and the spherical harmonic sum that yields the dipole
moment potential.

The quadrupole term of the potential was stated to be

(10.11)
1

4πε0

4π
5r3

2∑
m =−2

∫
(r′)2ρ(x′)Y∗lm(θ′, φ′)Ylm(θ, φ) =

1
2

∑
i j

Qi j
xix j

r5 ,

where

(10.12)Qi, j =

∫ (
3x′i x

′
j − δi j(r′)2

)
ρ(x′)d3x′.

Let’s verify this. First note that

(10.13)Yl,m =

√
2l + 1

4π
(l − m)!
(l + m)!

Pm
l (cos θ)eimφ,

and

(10.14)P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x),

so

(10.15)

Yl,−m =

√
2l + 1

4π
(l + m)!
(l − m)!

P−m
l (cos θ)e−imφ

= (−1)m

√
2l + 1

4π
(l − m)!
(l + m)!

Pm
l (x)e−imφ

= (−1)mY∗l,m.

That means

(10.16)

ql,−m =

∫
(r′)lρ(x′)Y∗l,−m(θ′, φ′)d3x′

= (−1)m
∫

(r′)lρ(x′)Yl,m(θ′, φ′)d3x′

= (−1)mq∗lm.

In particular, for m , 0
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(10.17)
(r′)lY∗l,m(θ′, φ′)rlYl,m(θ, φ) + (r′)lY∗l,−m(θ′, φ′)rlYl,−m(θ, φ)

= (r′)lY∗l,m(θ′, φ′)rlYl,m(θ, φ) + (r′)lYl,m(θ′, φ′)rlY∗l,m(θ, φ),

or

(r′)lY∗l,m(θ′, φ′)rlYl,m(θ, φ) + (r′)lY∗l,−m(θ′, φ′)rlYl,−m(θ, φ) = 2 Re
(
(r′)lY∗l,m(θ′, φ′)rlYl,m(θ, φ)

)
.

(10.18)

To verify the quadrupole expansion formula in a compact way it is helpful to compute some
intermediate results.

(10.19)
rY1,1 = −r

√
3

8π
sin θeiφ

= −

√
3

8π
(x + iy),

(10.20)
rY1,0 = r

√
3

4π
cos θ

=

√
3

4π
z,

(10.21)
r2Y2,2 = −r2

√
15

32π
sin2 θe2iφ

= −

√
15

32π
(x + iy)2,

(10.22)
r2Y2,1 = r2

√
15
8π

sin θ cos θeiφ

=

√
15
8π

z(x + iy),

(10.23)
r2Y2,0 = r2

√
5

16π

(
3 cos2 θ − 1

)
=

√
5

16π

(
3z2 − r2

)
.
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Given primed coordinates and integrating the conjugate of each of these with ρ(x′)dV ′, we
obtain the qlm moment coefficients. Those are

(10.24)q11 = −

√
3

8π

∫
d3x′ρ(x′)(x − iy),

(10.25)q1,0 =

√
3

4π

∫
d3x′ρ(x′)z′,

(10.26)q2,2 = −

√
15

32π

∫
d3x′ρ(x′)(x′ − iy′)2,

(10.27)q2,1 =

√
15
8π

∫
d3x′ρ(x′)z′(x′ − iy′),

(10.28)q2,0 =

√
5

16π

∫
d3x′ρ(x′)

(
3(z′)2 − (r′)2

)
.

For the potential we are interested in

(10.29)
2 Re q11r2Y11(θ, φ) = 2

3
8π

∫
d3x′ρ(x′) Re

(
(x′ − iy′)(x + iy)

)
=

3
4π

∫
d3x′ρ(x′)

(
xx′ + yy′

)
,

(10.30)q1,0rY1,0(θ, φ) =
3

4π

∫
d3x′ρ(x′)z′z,

(10.31)

2 Re q22r2Y22(θ, φ) = 2
15

32π

∫
d3x′ρ(x′) Re

(
(x′ − iy′)2(x + iy)2

)
=

15
16π

∫
d3x′ρ(x′) Re

(
((x′)2 − 2ix′y′ − (y′)2)(x2 + 2ixy − y2)

)
=

15
16π

∫
d3x′ρ(x′)

(
((x′)2 − (y′)2)(x2 − y2) + 4xx′yy′

)
,

(10.32)
2 Re q21r2Y21(θ, φ) = 2

15
8π

∫
d3x′ρ(x′)z Re

(
(x′ − iy′)(x + iy)

)
=

15
4π

∫
d3x′ρ(x′)z

(
xx′ + yy′

)
,
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and

(10.33)q2,0r2Y20(θ, φ) =
5

16π

∫
d3x′ρ(x′)

(
3(z′)2 − (r′)2

) (
3z2 − r2

)
.

The dipole term of the potential is

(10.34)

1
4πε0

4π
3r3

(
3

4π

∫
d3x′ρ(x′)

(
xx′ + yy′

)
+

3
4π

∫
d3x′ρ(x′)z′z

)
=

1
4πε0r3 x ·

∫
d3x′ρ(x′)x′

=
x · p

4πε0r3 ,

as obtained directly when a strict dipole approximation was used.
Summing all the terms for the quadrupole gives

(10.35)

1
4πεr5

4π
5
(

15
16π

∫
d3x′ρ(x′)

(
((x′)2 − (y′)2)(x2 − y2) + 4xx′yy′

)
+

15
4π

∫
d3x′ρ(x′)zz′ (xx′ + yy′)

+
5

16π

∫
d3x′ρ(x′)

(
3(z′)2 − (r′)2

) (
3z2 − r2

)
)

=
1

4πεr5

∫
d3x′ρ(x′)

1
4
(3

(
((x′)2 − (y′)2)(x2 − y2) + 4xx′yy′

)
+ 12zz′ (xx′ + yy′)

+
(
3(z′)2 − (r′)2

) (
3z2 − r2

)
).

The portion in brackets is

(10.36)

3
(
((x′)2 − (y′)2)(x2 − y2) + 4xx′yy′

)
+12zz′ (xx′ + yy′)

+
(
2(z′)2 − (x′)2 − (y′)2

) (
2z2 − x2 − y2

)
= x2

(
3(x′)2 − 3(y′)2 −

(
2(z′)2 − (x′)2 − (y′)2

))
+y2

(
−3(x′)2 + 3(y′)2 −

(
2(z′)2 − (x′)2 − (y′)2

))
+2z2

(
2(z′)2 − (x′)2 − (y′)2

)
+12xx′yy′ + xx′zz′ + yy′zz′

= 2x2
(
2(x′)2 − (y′)2 − (z′)2

)
+2y2

(
2(y′)2 − (x′)2 − (z′)2

)
+2z2

(
2(z′)2 − (x′)2 − (y′)2

)
+12xx′yy′ + xx′zz′ + yy′zz′.
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The quadrupole sum can now be written as

(10.37)
1
2

1
4πεr5

∫
d3x′ρ(x′)(x2

(
3(x′)2 − (r′)2

)
+ y2

(
3(y′)2 − (r′)2

)
+ z2

(
3(z′)2 − (r′)2

)
+ 3

(
xyx′y′ + yxy′x′ + xzx′z′ + zxz′x′ + yzy′z′ + zyz′y′

)
),

which is precisely eq. (10.11), the quadrupole potential stated in the text and class notes.

10.1 problems

Exercise 10.1 Dipole multipole moment.

Following Jackson [8], derive the electric field contribution from the dipole terms of the multi-
pole sum, but don’t skip the details.
Answer for Exercise 10.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION
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F R E S N E L R E L AT I O N S

11.1 single interface te mode .

The Fresnel reflection geometry for an electric field E parallel to the interface (TE mode) is
sketched in fig. 11.1.

Figure 11.1: Electric field TE mode Fresnel geometry.

(11.1)Ei = e2Eie jωt− jki·x,

with an assumption that this field maintains it’s polarization in both its reflected and transmit-
ted components, so that

(11.2)Er = e2rEie jωt− jkr ·x,

and

(11.3)Et = e2tEie jωt− jkt ·x,

Measuring the angles θi, θr, θt from the normal, with i = e3e1 the wave vectors are

(11.4)

ki = e3k1eiθi = k1 (e3 cos θi + e1 sin θi)

kr = −e3k1e−iθr = k1 (−e3 cos θr + e1 sin θr)

kt = e3k2eiθt = k2 (e3 cos θt + e1 sin θt)

83
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So the time harmonic electric fields are

(11.5)

Ei = e2Ei exp (− jk1 (z cos θi + x sin θi))

Er = e2rEi exp (− jk1 (−z cos θr + x sin θr))

Et = e2tEi exp (− jk2 (z cos θt + x sin θt)) .

The magnetic fields follow from Faraday’s law

(11.6)

H =
1
− jωµ

∇ × E

=
1
− jωµ

∇ × e2e− jk·x

=
1

jωµ
e2 × ∇e− jk·x

= −
1
ωµ

e2 × ke− jk·x

=
1
ωµ

k × E

We have

(11.7)

k̂i × e2 = −e1 cos θi + e3 sin θi

k̂r × e2 = e1 cos θr + e3 sin θr

k̂t × e2 = −e1 cos θt + e3 sin θt,

Note that

(11.8)

k
ωµ

=
k

kvµ

=

√
µε

µ

=

√
ε

µ

=
1
η
.

so

(11.9)

Hi =
Ei

η1
(−e1 cos θi + e3 sin θi) exp (− jk1 (z cos θi + x sin θi))

Hr =
rEi

η1
(e1 cos θr + e3 sin θr) exp (− jk1 (−z cos θr + x sin θr))

Ht =
tEi

η2
(−e1 cos θt + e3 sin θt) exp (− jk2 (z cos θt + x sin θt)) .
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The boundary conditions at z = 0 with n̂ = e3 are

(11.10)

n̂ ×H1 = n̂ ×H2

n̂ · B1 = n̂ · B2

n̂ × E1 = n̂ × E2

n̂ · D1 = n̂ · D2,

At x = 0, this is

(11.11)

−
1
η1

cos θi +
r
η1

cos θr = −
t
η2

cos θt

k1 sin θi + k1r sin θr = k2t sin θt

1 + r = t

When t = 0 the latter two equations give Shell’s first law

sin θi = sin θr. (11.12)

Assuming this holds for all r, t we have

(11.13)k1 sin θi(1 + r) = k2t sin θt,

which is Snell’s second law in disguise

(11.14)k1 sin θi = k2 sin θt.

With

(11.15)

k =
ω

v
=
ω

c
c
v

=
ω

c
n,

so eq. (11.14) takes the form

n1 sin θi = n2 sin θt. (11.16)

With

(11.17)
k1z = k1 cos θi

k2z = k2 cos θt,
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we can solve for r, t by inverting

(11.18)

µ2k1z µ1k2z

−1 1


rt

 =

µ2k1z

1

 ,
which gives

(11.19)

rt
 =

1 −µ1k2z

1 µ2k1z


µ2k1z

1

 ,
or

r =
µ2k1z − µ1k2z

µ2k1z + µ1k2z

t =
2µ2k1z

µ2k1z + µ1k2z

(11.20)

There are many ways that this can be written. Dividing both the numerator and denominator
by µ1µ2ω/c, and noting that k = ωn/c, we have

(11.21)

r =

n1
µ1

cos θi −
n2
µ2

cos θt
n1
µ1

cos θi +
n2
µ2

cos θt

t =
2 n1
µ1

cos θi
n1
µ1

cos θi +
n2
µ2

cos θt
,

which checks against (4.32,4.33) in [6].

11.2 single interface tm mode .

For completeness, now consider the TM mode.
Faraday’s law also can provide the electric field from the magnetic

(11.22)

k̂ ×H = ηk̂ ×
(
k̂ × E

)
= −ηk̂ ·

(
k̂ ∧ E

)
= −η

(
E − k̂

(
k̂ · E

))
= −ηE.

so

(11.23)E = ηH × k̂.
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So the magnetic and electric fields are

(11.24a)

Hi = e2
Ei

η1
exp (− jk1 (z cos θi + x sin θi))

Hr = e2r
Ei

η1
exp (− jk1 (−z cos θr + x sin θr))

Ht = e2t
Ei

η2
exp (− jk2 (z cos θt + x sin θt))

(11.24b)

Ei = −Ei (−e1 cos θi + e3 sin θi) exp (− jk1 (z cos θi + x sin θi))

Er = −rEi (e1 cos θr + e3 sin θr) exp (− jk1 (−z cos θr + x sin θr))

Et = −tEi (−e1 cos θt + e3 sin θt) exp (− jk2 (z cos θt + x sin θt)) .

Imposing the constraints eq. (11.10), at x = z = 0 we have

(11.25)

1
η1

(1 + r) =
t
η2

cos θi − r cos θr = t cos θt

ε1 (sin θi + r sin θr) = tε2 sin θt

.

At t = 0, the first and third of these give θi = θr. Assuming this incident and reflection angle
equality holds for all values of t, we have

(11.26)
sin θi(1 + r) = t

ε2

ε1
sin θt

sin θi
η1

η2
t =

or

(11.27)ε1η1 sin θi = ε2η2 sin θt.

This is also Snell’s second law eq. (11.16) in disguise, which can be seen by

(11.28)

ε1η1 = ε1

√
µ1

ε1

=
√
ε1µ1

=
1
v

=
n
c
.

The remaining equations in matrix form are
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(11.29)

cos θi cos θt

−1 η1
η2


rt

 =

cos θi

1

 ,
the inverse of which is

(11.30)

rt
 =

1
η1
η2

cos θi + cos θt

 η1
η2
− cos θt

1 cos θi


cos θi

1


=

1
η1
η2

cos θi + cos θt

 η1
η2

cos θi − cos θt

2 cos θi

 ,
or

r =
η1 cos θi − η2 cos θt

η1 cos θi + η2 cos θt

t =
2η2 cos θi

η1 cos θi + η2 cos θt
.

(11.31)

Multiplication of the numerator and denominator by c/η1η2, noting that c/η = n/µ gives

(11.32)

r =

n2
µ2

cos θi −
n1
µ1

cos θt
n2
µ2

cos θi +
n1
µ1

cos θt

t =
2 n1
µ1

cos θi
n2
µ2

cos θi +
n1
µ1

cos θt

which checks against (4.38,4.39) in [6].

11.3 normal transmission and reflection through two interfaces .

The geometry of a two interface configuration is sketched in fig. 11.2.
Given a normal incident ray with magnitude A, the respective forward and backwards rays in

each the mediums can be written as

I

(11.33)
→ Ae− jk1zz

← Are jk1zz

II

(11.34)
→ Ce− jk2zz

← De jk2zz
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Figure 11.2: Two interface transmission.

III

(11.35)→ Ate− jk3z(z−d)

Matching at z = 0 gives

(11.36)
At12 + r21D = C

Ar = Ar12 + Dt21,

whereas matching at z = d gives

(11.37)
At = Ce− jk2zdt23

De jk2zd = Ce− jk2zdr23

We have four linear equations in four unknowns r, t,C,D, but only care about solving for r, t.
Let’s write γ = e jk2zd,C′ = C/A,D′ = D/A, for

(11.38)

t12 + r21D′ = C′

r = r12 + D′t21

tγ = C′t23

D′γ2 = C′r23

Solving for C′,D′ we get

(11.39)
D′

(
γ2 − r21r23

)
= t12r23

C′
(
γ2 − r21r23

)
= t12γ

2,

so

(11.40)
r = r12 +

t12t21r23

γ2 − r21r23

t = t23
t12γ

γ2 − r21r23
.
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With φ = − jk2zd, or γ = e− jφ, we have

r = r12 +
t12t21r23e2 jφ

1 − r21r23e2 jφ

t =
t12t23e jφ

1 − r21r23e2 jφ .

(11.41)

A slab When the materials in region I, and III are equal, then r12 = r32. For a TE mode, we
have

r12 =
µ2k1z − µ1k2z

µ2k1z + µ1k2z
= −r21. (11.42)

so the reflection and transmission coefficients are

(11.43)

rTE = r12

1 − t12t21e2 jφ

1 − r2
21e2 jφ


tTE =

t12t21e jφ

1 − r2
21e2 jφ

.

It’s possible to produce a matched condition for which r12 = r21 = 0, by selecting

(11.44)

0 = µ2k1z − µ1k2z

= µ1µ2

(
1
µ1

k1z −
1
µ2

k2z

)
= µ1µ2ω

(
1

v1µ1
θ1 −

1
v2µ2

θ2

)
,

or

(11.45)
1
η1

cos θ1 =
1
η2

cos θ2,

so the matching condition for normal incidence is just

(11.46)η1 = η2.

Given this matched condition, the transmission coefficient for the 1,2 interface is

(11.47)

t12 =
2µ2k1z

µ2k1z + µ1k2z

=
2µ2k1z

2µ2k1z
= 1,
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so the matching condition yields

(11.48)
t = t12t21e jφ

= e jφ

= e− jk2zd.

Normal transmission through a matched slab only introduces a phase delay.

11.4 total internal reflection

From Snell’s second law we have

(11.49)θt = arcsin
(
ni

nt
sin θi

)
.

This is plotted in fig. 11.3.

Figure 11.3: Transmission angle vs incident angle.

For the ni > nt case, for example, like shining from glass into air, there is a critical incident
angle beyond which there is no real value of θt. That critical incident angle occurs when θt =

π/2, which is

(11.50)sin θic =
nt

ni
sin(π/2).

With

(11.51)n = nt/ni
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the critical angle is

(11.52)θic = arcsin n.

Note that Snell’s law can also be expressed in terms of this critical angle, allowing for the
solution of the transmission angle in a convenient way

(11.53)
sin θi =

nt

ni
sin θt

= n sin θt

= sin θic sin θt,

or

(11.54)sin θt =
sin θi

sin θic
.

Still for ni > nt, at angles past θic, the transmitted wave angle becomes complex as outlined
in [8] , namely

(11.55)

cos2 θt = 1 − sin2 θt

= 1 −
sin2 θi

sin2 θic

= −

(
sin2 θi

sin2 θic
− 1

)
,

or

(11.56)cos θt = j

√
sin2 θi

sin2 θic
− 1.

Following the convention that puts the normal propagation direction along z, and the interface
along x, the wave vector direction is

(11.57)k̂t = e3ee31θt

= e3 cos θt + e1 sin θt.

The phase factor for the transmitted field is

(11.58)

exp ( jωt ± jkt · x) = exp
(

jωt ± jkk̂t · x
)

= exp ( jωt ± jk (z cos θt + x sin θt))

= exp

 jωt ± jk

z j

√
sin2 θi

sin2 θic
− 1 + x

sin θi

sin θic




= exp

 jωt ± k

 jx
sin θi

sin θic
− z

√
sin2 θi

sin2 θic
− 1


 .
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The propagation is channelled along the x axis, but the propagation into the second medium
decays exponentially (or unphysically grows exponentially), only getting into the surface a
small amount.

What is the average power transmission into the medium? We are interested in the time
average of the normal component of the Poynting vector S · n̂.

(11.59)

S =
1
2

E ×H∗

=
1
2

E ×
(
1
η

k̂t × E∗
)

= −
1
2η

E ·
(
k̂t ∧ E∗

)
= −

1
2η

(
(E · k̂t)E∗ − k̂tE · E∗

)
=

1
2η

k̂t|E|2.

(11.60)

k̂t · n̂ = (e3 cos θt + e1 sin θt) · e3

= cos θt

= j

√
sin2 θi

sin2 θic
− 1.

Note that this is purely imaginary. The time average real power transmission is

(11.61)〈S · n̂〉 = Re

 j

√
sin2 θi

sin2 θic
− 1

1
2η
|E|2


= 0.

There is no power transmission into the second medium at or past the critical angle for total
internal reflection.

11.5 brewster’s angle

Brewster’s angle is the angle for which there the amplitude of the reflected component of the
field is zero. Recall that when the electric field is parallel(perpendicular) to the plane of inci-
dence, the reflection amplitude ([6] eq. 4.38)

(11.62)r ‖ =

nt
µt

cos θi −
ni
µi

cos θt
nt
µt

cos θi +
ni
µi

cos θt
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(11.63)r ⊥ =

ni
µi

cos θi −
nt
µt

cos θt
ni
µi

cos θi +
nt
µt

cos θt

There are limited conditions for which r⊥ is zero, at least for µi = µt. Using Snell’s second
law ni sin θi = nt sin θt, that zero is found at

(11.64)

ni cos θi = nt cos θt

= nt

√
1 − sin2 θt

= nt

√
1 −

n2
i

n2
t

sin2 θi,

or

(11.65)
n2

i

n2
t

cos2 θi = 1 −
n2

i

n2
t

sin2 θi,

or

(11.66)
n2

i

n2
t

(
cos2 θi + sin2 θi

)
= 1.

This has solutions only when ni = ±nt. The ni = nt case is of no interest, since that is
just propagation, so naturally there is no reflection. The ni = −nt case is possible with the
transmission into a negative index of refraction material that is matched in absolute magnitude
with the index of refraction in the incident medium.

There are richer solutions for the r‖ zero. Again considering µ1 = µ2 those occur when

(11.67)

nt cos θi = ni cos θt

= ni

√
1 −

n2
i

n2
t

sin2 θi

= ni

√
1 −

n2
i

n2
t

sin2 θi

Let n = nt/ni, and square both sides. This gives

(11.68)
n2 cos2 θi = 1 −

1
n2 sin2 θi

= 1 −
1
n2 (1 − cos2 θi),

or
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(11.69)cos2 θi

(
n2 +

1
n2

)
= 1 −

1
n2 ,

or

(11.70)

cos2 θi =
1 − 1

n2

n2 − 1
n2

=
n2 − 1
n4 − 1

=
n2 − 1

(n2 − 1)(n2 + 1)

=
1

n2 + 1
.

We also have

(11.71)
sin2 θi = 1 −

1
n2 + 1

=
n2

n2 + 1
,

so

(11.72)tan2 θi = n2,

and

(11.73)tan θiB = ±n,

For normal media where ni > 0, nt > 0, only the positive solution is physically relevant,
which is

θiB = arctan
(
nt

ni

)
. (11.74)

11.6 problems

Exercise 11.1 Fresnel sum and difference formulas. ([6] pr. 4.39)

Given a µ1 = µ2 constraint, show that the Fresnel equations have the form

(11.75a)rTE =
sin(θt − θi)
sin(θt + θi)
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(11.75b)rTM =
tan(θi − θt)
tan(θi + θt)

(11.75c)tTE =
2 sin θt cos θi

sin(θi + θt)

(11.75d)tTM = sin(θi + θt) cos(θi − θt).

Answer for Exercise 11.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 11.2 Fresnel TM equations.

For the geometry shown in fig. 11.4, obtain the TM (E) Fresnel reflection and transmission
coefficients. Express your results in terms of the propagation constant k1z and and k2z, (i.e., the
projection of k1 and k2 along z-direction.) Note that the interface is at z = 0 plane.

Figure 11.4: TM mode geometry.

Answer for Exercise 11.2

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.
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. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 11.3 Two interfaces.

a. Give the TE transmission function T TE(ω) for a slab of length d with permittivity and
permeability ε2, µ2, surrounded by medium characterized by ε1 and µ1 as shown in
fig. 11.5.
Make sure you provide the expressions for the terms appearing in the transmission func-
tion T TE(ω).

b. Suppose medium (II) is a meta-material with ε2 = −ε1 and µ2 = −µ1, where ε1 > 0 and
µ1 > 0. What is the transmission function T TE(ω) in this case. Express your results in
terms of the propagation constant in medium (I), i.e. k1z.

c. Now consider a source located at z = 0 generating a uniform plane wave, and for sim-
plicity suppose a one-dimensional propagation. What is the field at the second interface
z = 2d. What is the meaning of your results?

Figure 11.5: Slab geometry.

Answer for Exercise 11.3

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
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. . .
. .

. . .
. .

. .
. END-REDACTION

Exercise 11.4 One dimensional photonic crystal.

Consider an infinitely periodic one dimensional photonic crystal (1DPC) shown in fig. 11.6
below where ni and n j are the indices of refractions (in general complex) associated with the
regions i and j having thicknesses di and d j. The one period transfer matrix M relates the fields
according to

(11.76a)

E′l,i
E′r,i

 = M

E′l,i+1

E′r,i+1



(11.76b)M = g

a b

b̂ â


(11.76c)g =

1
1 − ρ2

i, j

,

and ρi, j is the Fresnel coefficient. Give the expressions for a, â, b, b̂ in terms of βi, β j, and ρi, j

where the phase constants in regions i and j are

(11.77a)βi =
ω

c
nidi cos θi

(11.77b)β j =
ω

c
n jd j cos θ j,

and θi or θ j are the incident angles.
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Figure 11.6: 1DPC photonic crystal.

Answer for Exercise 11.4

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 11.5 Finite length photonic crystal.

Consider a truncated (finite length) one dimensional photonic crystal shown in fig. 11.7 be-
low, in which there are N dielectric slabs of index n j and length d j. Find the transmission and
reflection functions for this structure as a function of λ1, λ2, a, b, g and βi, where λ1 and λ2 are
the eigenvalues of the one period matrix M given in problem 3 of last week and a, b, g, and βi

are also defined in the same problem.
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Figure 11.7: Finite photonic crystal.

Answer for Exercise 11.5

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION

Exercise 11.6 Eccostock example.

Use the expression for transmission function obtained above and the values and instructions
below to plot the following at normal incidence:

a. Transmission magnitude and phase as a function of frequency for the case N = 3.

b. The group delay as a function of frequency for the cases N = 1, 2, 3, 4.

c. The group velocity as a function of frequency for the cases N = 1, 2, 3.

• ni = 1 (this is air), n j = 3.4 − j0.002 (this is Eccostock).

• di = 1.76 [cm]

• d j = 1.33 [cm]

• LPC = (N − 1)(di + d j) + d j

• Frequency range for all plots: 20 [GHz] to 23 [GHz].
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• Use linear scale for transmission magnitude (not dB) and express the transmission
phase in Degrees.

• Plot the group delay in nanosecond.

• Plot the group velocity in units of Vg/c, where c is the speed of light in vacuum.

Answer for Exercise 11.6

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION





12
G AU G E F R E E D O M .

12.1 problems

Exercise 12.1 Potentials under different gauges.

Using the non-existence of magnetic monopole and Faraday’s law

a. Define the vector and scalar vector potentials A(r, t) and V(r, t).
b. Let J = Ji + Jc be the current [A/m] and ρ be the charge [C/m] densities. Assum-

ing a simple medium and Lorentz gauge, derive the decoupled non-homogeneous wave
equations for A(r, t) and V(r, t).

c. Replace the Lorentz gauge of part b with the Coulomb gauge, and obtain the non-
homogeneous differential equations for A(r, t) and V(r, t).

d. What fundamental theorem allows us to use different gauges in part b and part b ?
(Justify your answer.)

Note: From the problem’s statement, it should be clear that I want the results for the
instantaneous fields and not in the form of time harmonic fields.

Answer for Exercise 12.1

PROBLEM SET RELATED MATERIAL REDACTED IN THIS DOCUMENT.PLEASE
FEEL FREE TO EMAIL ME FOR THE FULL VERSION IF YOU AREN’T TAKING ECE1228.

. .
. .

.
. . .

. .
. . .

. .
. .

. END-REDACTION
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Part II

A P P E N D I C E S





A
U S E F U L F O R M U L A S A N D R E V I E W

∇
′ 1
R

=
r̂

R2 = −∇
1
R

(A.1)

∇R = r̂ =
R
R

(A.2)

∇ f (R) = r̂
∂ f
∂R

(A.3)

−∇2 1
R

= 4πδ(R) (A.4)

(A.5)∇ × f =

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

∂/∂x ∂/∂y ∂/∂z

fx fy fz

∣∣∣∣∣∣∣∣∣∣∣ .

∇ × (∇ ×A) = ∇ (∇ ·A) −∇2A. (A.6)

Proofs. This result was used in ps1 problem 3,5, and 6.

(A.7)

∇ × (∇ × A) = εabcea∂b (εrster∂sAt)c
= εabcea∂bεcst∂sAt

= δ[st]
ab ea∂b∂sAt

= ea∂b (∂aAb − ∂bAa)
= ∇ (∇ · A) − ∇2A.
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Cylindrical coordinates

(A.8)

ρ̂ = e1ee1e2φ

φ̂ = e2ee1e2φ

ẑ = e3

(A.9)
∂φρ̂ = φ̂

∂φφ̂ = −ρ̂

(A.10)∇ = ρ̂∂ρ +
φ̂

ρ
∂φ + ẑ∂z

(A.11)∇ · A =
1
ρ
∂ρ(ρAρ) +

1
ρ
∂φAφ + ∂zAz

(A.12)∇ × A = ρ̂

(
1
ρ
∂φAz − ∂zAφ

)
+ φ̂

(
∂zAρ − ∂ρAz

)
+

1
ρ

ẑ
(
∂ρ(ρAφ) − ∂φAρ

)

(A.13)∇
2 =

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂2

∂φ2 +
∂2

∂z2

Spherical coordinates

(A.14)

r̂ = e1eiφ sin θ + e3 cos θ

θ̂ = cos θe1eiφ − sin θe3

φ̂ = e2eiφ

(A.15)

∂θr̂ = θ̂

∂φr̂ = S θφ̂

∂θθ̂ = −r̂
∂φθ̂ = Cθφ̂

∂θφ̂ = 0

∂φφ̂ = −r̂S θ − θ̂Cθ.

(A.16)∇ = r̂
∂

∂r
+
θ̂

r
∂

∂θ
+

φ̂

r sin θ
∂

∂φ̂
.
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(A.17)∇ · A =
1
r2 ∂r(r2Ar) +

1
rS θ

∂θ(S θAθ) +
1

rS θ
∂φAφ.

(A.18)∇ ×A = r̂
(

1
rS θ

∂θ(S θAφ) −
1

rS θ
∂φAθ

)
+ θ̂

(
1

rS θ
∂φAr −

1
r
∂r(rAφ)

)
+ φ̂

(
1
r
∂r(rAθ) −

1
r
∂θAr

)

(A.19)∇
2ψ =

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2

Vector calculus. Enumerate various vc theorems (divergence, curl, the cross product version
used in the BC problem, ...)

Normal and tangential decomposition. The decomposition of ?? can be derived easily using
Geometric Algebra

(A.20)A = n̂2A
= n̂(n̂ · A) + n̂(n̂ ∧ A)

The last dot product can be expanded as a grade one (vector) selection

(A.21)

n̂(n̂ ∧ A) = 〈n̂(n̂ ∧ A)〉1
= 〈n̂I(n̂ × A)〉1
= I2n̂ × (n̂ × A)
= −n̂ × (n̂ × A),

so the decomposition of a vector A in terms of its normal and tangential projections is

(A.22)A = n̂(n̂ · A) − n̂ × (n̂ × A).

I’m not sure how to naturally determine this relationship using traditional vector algebra.
However, it can be verified by expanding the triple cross product in coordinates using tensor
contraction formalism

(A.23)

−n̂ × (n̂ × A) = −εxyzexny (n̂ × A)z
= −εxyzexnyεzrsnrAs

= −δ[rs]
xy exnynrAs

= −exny
(
nxAy − nyAx

)
= −n̂(n̂ · A) + (n̂ · n̂)A
= A − n̂(n̂ · A).

This last statement illustrates the geometry of this decomposition, showing that the tangential
projection (or normal rejection) of a vector is really just the vector minus its normal projection.





B
G E O M E T R I C A L G E B R A

Having used Geometric Algebra in a couple problems, it is justified to provide an overview.
Further details can be found in [4], [3], [9], and [7].

Geometric Algebra defines a non-commutative, associative vector product

abc = (ab)c = a(bc), (B.1)

where the square of a vector equals the squared vector magnitude

(B.2)a2 = |a|2,

In Euclidean spaces such a squared vector is always positive, but that is not necessarily the
case in the mixed signature spaces used in special relativity.

There are a number of consequences of these two simple vector multiplication rules.

• Squared unit vectors have a unit magnitude (up to a sign). In a Euclidean space such a
product is always positive

(B.3)(e1)2 = 1.

• Products of perpendicular vectors anticommute.

(B.4)
2 = (e1 + e2)2

= (e1 + e2)(e1 + e2)
= e2

1 + e2e1 + e1e2 + e2
2

= 2 + e2e1 + e1e2.

A product of two perpendicular vectors is called a bivector, and can be used to repre-
sent an oriented plane. The last line above shows an example of a scalar and bivector
sum, called a multivector. In general Geometric Algebra allows sums of scalars, vectors,
bivectors, and higher degree analogues (grades) be summed.

Comparison of the RHS and LHS of eq. (B.4) shows that we must have

(B.5)e2e1 = −e1e2.
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It is true in general that the product of two perpendicular vectors anticommutes. When,
as above, such a product is a product of two orthonormal vectors, it behaves like a non-
commutative imaginary quantity, as it has an imaginary square in Euclidean spaces

(B.6)

(e1e2)2 = (e1e2)(e1e2)
= e1(e2e1)e2

= −e1(e1e2)e2

= −(e1e1)(e2e2)
= −1.

Such “imaginary” (unit bivectors) have important applications describing rotations in
Euclidean spaces, and boosts in Minkowski spaces.

• The product of three perpendicular vectors, such as

(B.7)I = e1e2e3,

is called a trivector. In R3, the product of three orthonormal vectors is called a pseu-
doscalar for the space, and can represent an oriented volume element. The quantity I
above is the typical orientation picked for the R3 unit pseudoscalar. This quantity also
has characteristics of an imaginary number

(B.8)

I2 = (e1e2e3)(e1e2e3)
= e1e2(e3e1)e2e3

= −e1e2e1e3e2e3

= −e1(e2e1)(e3e2)e3

= −e1(e1e2)(e2e3)e3

= −e2
1e2

2e2
3

= −1.

• The product of two vectors in R3 can be expressed as the sum of a symmetric scalar
product and antisymmetric bivector product

(B.9)

ab =

n∑
i, j=1

eie jaib j

=

n∑
i=1

e2
i aibi +

∑
0<i, j≤n

eie jaib j

=

n∑
i=1

aibi +
∑

0<i< j≤n

eie j(aib j − a jbi).
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The first (symmetric) term is clearly the dot product. The antisymmetric term is desig-
nated the wedge product. In general these are written

(B.10)ab = a · b + a ∧ b,

where

(B.11)
a · b ≡

1
2
(ab + ba)

a ∧ b ≡
1
2
(ab − ba) ,

The coordinate expansion of both can be seen above, but in R3 the wedge can also be
written

a∧ b = e1e2e3(a × b) = I(a × b). (B.12)

This allows for an handy dot plus cross product expansion of the vector product

(B.13)ab = a · b + I(a × b).

This result should be familiar to the student of quantum spin states where one writes

(B.14)(σ · a)(σ · b) = (a · b) + i(a × b) · σ.

This correspondence is because the Pauli spin basis is a specific matrix representation of
a Geometric Algebra, satisfying the same commutator and anticommutator relationships.
A number of other algebra structures, such as complex numbers, and quaterions can also
be modelled as Geometric Algebra elements.

• It is often useful to utilize the grade selection operator 〈M〉n and scalar grade selection
operator 〈M〉 = 〈M〉0 to select the scalar, vector, bivector, trivector, or higher grade alge-
braic elements. For example, operating on vectors a,b, c, we have

(B.15)

〈ab〉 = a · b
〈abc〉1 = a(b · c) + a · (b ∧ c)

= a(b · c) + (a · b)c − (a · c)b
〈ab〉2 = a ∧ b
〈abc〉3 = a ∧ b ∧ c.
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Note that the wedge product of any number of vectors such as a ∧ b ∧ c is associative
and can be expressed in terms of the complete antisymmetrization of the product of those
vectors. A consequence of that is the fact a wedge product that includes any colinear
vectors in the product is zero.

Example B.1: Helmholz equations.

As an example of the power of eq. (B.13), consider the following Helmholtz equation
derivation (wave equations for the electric and magnetic fields in the frequency domain.)

Application of eq. (B.13) to Maxwell equations in the frequency domain for source free
simple media gives

(B.16a)∇E = − jωIB

(B.16b)∇IB = − jωµεE.

These equations use the engineering (not physics) sign convention for the phasors where
the time domain fields are of the form E(r, t) = Re(Ee jωt).

Operation with the gradient from the left produces the Helmholtz equation for each of
the fields using nothing more than multiplication and simple substitution

(B.17a)∇
2E = −µεω2E

(B.17b)∇
2IB = −µεω2IB.

There was no reason to go through the headache of looking up or deriving the expansion
of ∇ × (∇ × A) as is required with the traditional vector algebra demonstration of these
identities.

Observe that the usual Helmholtz equation for B doesn’t have a pseudoscalar factor. That
result can be obtained by just cancelling the factors I since the R3 Euclidean pseudoscalar
commutes with all grades (this isn’t the case in R2 nor in Minkowski spaces.)

Example B.2: Factoring the Laplacian.

There are various ways to demonstrate the identity

(B.18)∇ × (∇ × A) = ∇ (∇ · A) − ∇2A,
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such as the use of (somewhat obscure) tensor contraction techniques. We can also do
this with Geometric Algebra (using a different set of obscure techniques) by factoring the
Laplacian action on a vector

(B.19)

∇
2A = ∇(∇A)

= ∇(∇ · A + ∇ ∧ A)
= ∇(∇ · A) + ∇ · (∇ ∧ A) +(((((

∇ ∧ ∇ ∧ A
= ∇(∇ · A) + ∇ · (∇ ∧ A).

Should we wish to express the last term using cross products, a grade one selection
operation can be used

(B.20)

∇ · (∇ ∧ A) = 〈∇(∇ ∧ A)〉1
= 〈∇I(∇ × A)〉1
= 〈I∇ ∧ (∇ × A)〉1
=

〈
I2
∇ × (∇ × A)

〉
1

= −∇ × (∇ × A).

Here coordinate expansion was not required in any step.





C
JAC K S O N ’ S E L E C T RO S TAT I C S E L F E N E R G Y A NA LY S I S

Motivation I was reading my Jackson [8], which characteristically had the statement “the [...]
integral can easily be shown to have the value 4π”, in a discussion of electrostatic energy and
self energy. After a few attempts and a couple of pages of calculations, I figured out how this
can be easily shown.

Context Let me walk through the context that leads to the “easy” integral, and then the eval-
uation of that integral. Unlike my older copy of Jackson, I’ll do this in SI units.

The starting point is a statement that the work done (potential energy) of one charge qi in a
set of n charges, where that charge is brought to its position xi from infinity, is

(C.1)Wi = qiΦ(xi),

where the potential energy due to the rest of the charge configuration is

(C.2)Φ(xi) =
1

4πε

∑
i, j

q j∣∣∣xi − x j
∣∣∣ .

This means that the total potential energy, making sure not to double count, to move all the
charges in from infinity is

(C.3)W =
1

4πε

∑
1≤i< j≤n

qiq j∣∣∣xi − x j
∣∣∣ .

This sum over all unique pairs is somewhat unwieldy, so it can be adjusted by explicitly
double counting with a corresponding divide by two

(C.4)W =
1
2

1
4πε

∑
1≤i, j≤n

qiq j∣∣∣xi − x j
∣∣∣ .

The point that causes the trouble later is the continuum equivalent to this relationship, which
is

(C.5)W =
1

8πε

∫
ρ(x)ρ(x′)
|x − x′|

d3xd3x′,

or

(C.6)W =
1
2

∫
ρ(x)Φ(x)d3x.
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There’s a subtlety here that is often passed over. When the charge densities represent point
charges ρ(x) = qδ3(x − x′) are located at, notice that this integral equivalent is evaluated over
all space, including the spaces that the charges that the charges are located at.

Ignoring that subtlety, this potential energy can be expressed in terms of the electric field, and
then integrated by parts

(C.7)

W =
1
2

∫
(∇ · (εE))Φ(x)d3x

=
ε

2

∫
(∇ · (EΦ) − (∇Φ) · E) d3x

=
ε

2

∮
dAn̂ · (EΦ) +

ε

2

∫
E · Ed3x.

The presumption is that EΦ falls off as the bounds of the integration volume tends to infinity.
That leaves us with an energy density proportional to the square of the field

(C.8)w =
ε

2
E2.

Inconsistency It’s here that Jackson points out the inconsistency between eq. (C.8) and the
original discrete analogue eq. (C.4) that this was based on. The energy density is positive defi-
nite, whereas the discrete potential energy can be negative if there is a difference in the sign of
the charges.

Here Jackson uses a two particle charge distribution to help resolve this conundrum. For a
superposition E = E1 + E2, we have

(C.9)E =
1

4πε
q1(x − x1)

|x − x1|
3 +

1
4πε

q2(x − x2)

|x − x2|
3 ,

so the energy density is

(C.10)w =
1

32π2ε

q2
1

|x − x1|
4 +

1
32π2ε

q2
2

|x − x2|
4 + 2

q1q2

32π2ε

(x − x1)

|x − x1|
3 ·

(x − x2)

|x − x2|
3 .

The discrete potential had only an interaction energy, whereas the potential from this squared
field has an interaction energy plus two self energy terms. Those two strictly positive self energy
terms are what forces this field energy positive, independent of the sign of the interaction energy
density. Jackson makes a change of variables of the form

(C.11)

ρ = (x − x1)/R

R = |x1 − x2|

n̂ = (x1 − x2)/R,
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for which we find

(C.12)x = x1 + Rρ,

so

(C.13)x − x2 = x1 − x2 + RρR(n̂ + ρ),

and

(C.14)d3x = R3d3ρ,

so the total interaction energy is

(C.15)

Wint =
q1q2

16π2ε

∫
d3x

(x − x1)

|x − x1|
3 ·

(x − x2)

|x − x2|
3

=
q1q2

16π2ε

∫
R3d3ρ

Rρ

R3|ρ|3
·

R(n̂ + ρ)
R3|n̂ + ρ|3

=
q1q2

16π2εR

∫
d3ρ

ρ

|ρ|3
·

(n̂ + ρ)

|n̂ + ρ|3
.

Evaluating this integral is what Jackson calls easy. The technique required is to express the
integrand in terms of gradients in the ρ coordinate system

(C.16)

∫
d3ρ

ρ

|ρ|3
·

(n̂ + ρ)

|n̂ + ρ|3
=

∫
d3ρ

(
−∇ρ

1
|ρ|

)
·

(
−∇ρ

1
|n̂ + ρ|

)
=

∫
d3ρ

(
∇ρ

1
|ρ|

)
·

(
∇ρ

1
|n̂ + ρ|

)
.

I found it somewhat non-trivial to find the exact form of the chain rule that is required to
simplify this integral, but after some trial and error, figured it out by working backwards from

(C.17)∇
2
ρ

1
|ρ||n̂ + ρ|

= ∇ρ ·

(
1
|ρ|
∇ρ

1
|n̂ + ρ|

)
+ ∇ρ ·

(
1

|n̂ + ρ|
∇ρ

1
|ρ|

)
.
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In integral form this is

(C.18)

∮
dA′n̂′ · ∇ρ

1
|ρ||n̂ + ρ|

=

∫
d3ρ′∇ρ′ ·

(
1

|ρ′ − n̂|
∇ρ′

1
|ρ′|

)
+

∫
d3ρ∇ρ ·

(
1

|n̂ + ρ|
∇ρ

1
|ρ|

)
=

∫
d3ρ′

(
∇ρ′

1
|ρ′ − n̂|

· ∇ρ′
1
|ρ′|

)
+

∫
d3ρ′

1
|ρ′ − n̂|

∇
2
ρ′

1
|ρ′|

+

∫
d3ρ

(
∇ρ

1
|n̂ + ρ|

)
· ∇ρ

1
|ρ|

+

∫
d3ρ

1
|n̂ + ρ|

∇
2
ρ

1
|ρ|

= 2
∫

d3ρ

(
∇ρ

1
|n̂ + ρ|

)
· ∇ρ

1
|ρ|

− 4π
∫

d3ρ′
1

|ρ′ − n̂|
δ3(ρ′) − 4π

∫
d3ρ

1
|ρ + n̂|

δ3(ρ)

= 2
∫

d3ρ

(
∇ρ

1
|n̂ + ρ|

)
· ∇ρ

1
|ρ|
− 8π.

This used the Laplacian representation of the delta function δ3(x) = −(1/4π)∇2(1/|x|). Back-
substitution gives

(C.19)
∫

d3ρ
ρ

|ρ|3
·

(n̂ + ρ)

|n̂ + ρ|3
= 4π +

∮
dA′n̂′ · ∇ρ

1
|ρ||n̂ + ρ|

.

We can argue that this last integral tends to zero, since

(C.20)

∮
dA′n̂′ · ∇ρ

1
|ρ||n̂ + ρ|

=

∮
dA′n̂′ ·

((
∇ρ

1
|ρ|

)
1

|n̂ + ρ|
+

1
|ρ|

(
∇ρ

1
|n̂ + ρ|

))

= −

∮
dA′n̂′ ·

 ρ

1
|ρ|

3

1
|n̂ + ρ|

+
1
|ρ|

(ρ + n̂)

|n̂ + ρ|3


= −

∮
dA′

1
|ρ||ρ + n̂|

(
n̂′ · ρ
|ρ|2

+
n̂′ · (ρ + n̂)

|ρ + n̂|2

)
.

The integrand in this surface integral is of O(1/ρ3) so tends to zero on an infinite surface in
the ρ coordinate system. This completes the “easy” integral, leaving

(C.21)
∫

d3ρ
ρ

|ρ|3
·

(n̂ + ρ)

|n̂ + ρ|3
= 4π.

The total field energy can now be expressed as a sum of the self energies and the interaction
energy

(C.22)W =
1

32π2ε

∫
d3x

q2
1

|x − x1|
4 +

1
32π2ε

∫
d3x

q2
2

|x − x2|
4 +

1
4πε

q1q2

|x1 − x2|
.
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The interaction energy is exactly the potential energies for the two particles, the this total
energy in the field is biased in the positive direction by the pair of self energies. It is interesting
that the energy obtained from integrating the field energy density contains such self energy
terms, but I don’t know exactly what to make of them at this point in time.





D
M AG N E T O S TAT I C F O R C E A N D T O R Q U E .

In Jackson [8], the following equations for the vector potential, magnetostatic force and torque
are derived

(D.1)m =
1
2

∫
x′ × J(x′)d3x′

(D.2)F = ∇(m · B),

(D.3)N = m × B,

where B is an applied external magnetic field and m is the magnetic dipole for the current in
question. These results (and a similar one derived earlier for the vector potential A) all follow
from an analysis of localized current densities J, evaluated far enough away from the current
sources.

For the force and torque, the starting point for the force is one that had me puzzled a bit.
Namely

(D.4)F =

∫
J(x) × B(x)d3x

This is clearly the continuum generalization of the point particle Lorentz force equation,
which for E = 0 is:

(D.5)F = qv × B

For the point particle, this is the force on the particle when it is in the external field BB. i.e.
this is the force at the position of the particle. My question is what does it mean to sum all the
forces on the charge distribution over all space. How can a force be applied over all, as opposed
to a force applied at a single point, or against a surface?

In the special case of a localized current density, this makes some sense. Considering the
other half of the force equation F = d

dt

∫
ρmvdV , where ρm here is mass density of the charged

particles making up the continuous current distribution. The other half of this F = ma equation
is also an average phenomena, so we have an average of sorts on both the field contribution to
the force equation and the mass contribution to the force equation. There is probably a centre-
of-mass and centre-of-current density interpretation that would make a bit more sense of this
continuum force description.

It’s kind of funny how you can work through all the detailed mathematical steps in a book
like Jackson, but then go right back to the beginning and say “Hey, what does that even mean”?
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Force Moving on from the pondering of the meaning of the equation being manipulated, let’s
do the easy part, the derivation of the results that Jackson comes up with.

Writing out eq. (D.4) in coordinates

(D.6)F = εi jkei

∫
J jBkd3x.

To first order, a slowly varying (external) magnetic field can be expanded around a point of
interest

(D.7)B(x) = B(x0) + (x − x0) · ∇B,

where the directional derivative is evaluated at the point x0 after the gradient operation. Set-
ting the origin at this point x0 gives

(D.8)
F = εi jkei

(∫
J j(x′)Bk(0)d3x′ +

∫
J j(x′)(x′ · ∇)Bk(0)d3x′

)
= εi jkeik0

∫
J j(x′)d3x′ + εi jkei

∫
J j(x′)(x′ · ∇)Bk(0)d3x′.

We found in ?? that the first integral can be written as a divergence

(D.9)
∫

J j(x′)d3x′ =

∫
∇
′ ·

(
J(x′)x′j

)
dV ′,

which is zero when the integration surface is outside of the current localization region. We
also found in ?? that

∫
(x · x′)J = −

1
2

x ×
∫

x′ × J = m × x. (D.10)

so

(D.11)

∫
(∇Bk(0) · x′)J j = −

1
2

(
∇Bk(0) ×

∫
x′ × J

)
j

= (m × (∇Bk(0))) j .

This gives

(D.12)

F = εi jkei (m × (∇Bk(0))) j
= εi jkei (m × ∇) j Bk(0)
= (m × ∇) × B(0)

= −B(0) × (m ×
←

∇)

= (B(0) ·m)
←

∇ − (B ·
←

∇)m
= ∇(B(0) ·m) −m(∇ · B(0)).

The second term is killed by the magnetic Gauss’s law, leaving to first order
(D.13)F = ∇ (m · B) .
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Torque For the torque we have a similar quandary at the starting point. About what point is a
continuum torque integral of the following form

(D.14)N =

∫
x′ × (J(x′) × B(x′))d3x′?

Ignoring that detail again, assuming the answer has something to do with the centre of mass
and parallel axis theorem, we can proceed with a constant approximation of the magnetic field

(D.15)

N =

∫
x′ × (J(x′) × B(0))d3x′

= −

∫
(x′ · J(x′))B(0)d3x′ +

∫
(x′ · B(0))J(x′)d3x′

= −B(0)
∫

(x′ · J(x′))d3x′ +
∫

(x′ · B(0))J(x′)d3x′.

Jackson’s trick for killing the first integral is to transform it into a divergence by evaluating

(D.16)

∇ ·
(
J|x|2

)
= (∇ · J)|x|2 + J · ∇|x|2

= J · ei∂ixmxm

= 2J · eiδimxm

= 2J · x,

so

(D.17)
N = −

1
2

B(0)
∫
∇
′ ·

(
J(x′)

∣∣∣x′∣∣∣2) d3x′ +
∫

(x′ · B(0))J(x′)d3x′

= −
1
2

B(0)
∮

n ·
(
J(x′)

∣∣∣x′∣∣∣2) d3x′ +
∫

(x′ · B(0))J(x′)d3x′.

Again, the localized current density assumption kills the surface integral. The second integral
can be evaluated with eq. (D.10), so to first order we have

(D.18)N = m × B.





E
L I N E C H A R G E F I E L D A N D P OT E N T I A L

When computing the most general solution of the electrostatic potential in a plane, Jackson [8]
mentions that −2λ0 ln ρ is the well known potential for an infinite line charge (up to the unit
specific factor). Checking that statement, since I didn’t recall what that potential was offhand, I
encountered some inconsistencies and non-convergent integrals, and thought it was worthwhile
to explore those a bit more carefully. This will be done here.

Using Gauss’s law. For an infinite length line charge, we can find the radial field contribution
using Gauss’s law, imagining a cylinder of length ∆l of radius ρ surrounding this charge with
the midpoint at the origin. Ignoring any non-radial field contribution, we have

(E.1)
∫ ∆l/2

−∆l/2
n̂ · E(2πρ)dl =

λ0

ε0
∆l,

or

(E.2)E =
λ0

2πε0

ρ̂

ρ
.

Since

(E.3)
ρ̂

ρ
= ∇ ln ρ,

this means that the potential is

(E.4)φ = −
2λ0

4πε0
ln ρ.

Finite line charge potential. Let’s try both these calculations for a finite charge distribution.
Gauss’s law looses its usefulness, but we can evaluate the integrals directly. For the electric field

(E.5)E =
λ0

4πε0

∫
(x − x′)
|x − x′|3

dl′.

Using cylindrical coordinates with the field point x = ρρ̂ for convenience, the charge point
x′ = z′ẑ, and a the charge distributed over [a, b] this is

(E.6)E =
λ0

4πε0

∫ b

a

(ρρ̂ − z′ẑ)(
ρ2 + (z′)2)3/2 dz′.
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When the charge is uniformly distributed around the origin [a, b] = b[−1, 1] the ẑ component
of this field is killed because the integrand is odd. This justifies ignoring such contributions in
the Gaussian cylinder analysis above. The general solution to this integral is found to be

(E.7)E =
λ0

4πε0

 z′ρ̂

ρ

√
ρ2 + (z′)2

+
ẑ√

ρ2 + (z′)2


∣∣∣∣∣∣∣∣∣
b

a

,

or

E =
λ0

4πε0

 ρ̂ρ
 b√

ρ2 + b2
−

a√
ρ2 + a2

 + ẑ

 1√
ρ2 + b2

−
1√

ρ2 + a2


 . (E.8)

When b = −a = ∆l/2, this reduces to

(E.9)E =
λ0

4πε0

ρ̂

ρ

∆l√
ρ2 + (∆l/2)2

,

which further reduces to eq. (E.2) when ∆l � ρ.

Finite line charge potential. Wrong but illuminating. Again, putting the field point at z′ = 0,
we have

(E.10)φ(ρ) =
λ0

4πε0

∫ b

a

dz′(
ρ2 + (z′)2)1/2 ,

which integrates to

(E.11)φ(ρ) =
λ0

4πε0
ln

b +

√
ρ2 + b2

a +

√
ρ2 + a2

.

With b = −a = ∆l/2, this approaches

(E.12)
φ ≈

λ0

4πε0
ln

(∆l/2)
ρ2/2|∆l/2|

=
−2λ0

4πε0
ln ρ +

λ0

4πε0
ln

(
(∆l)2/2

)
.

Before ∆l is allowed to tend to infinity, this is identical (up to a difference in the reference
potential) to eq. (E.4) found using Gauss’s law. It is, strictly speaking, singular when ∆l → ∞,
so it does not seem right to infinity as a reference point for the potential.
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There’s another weird thing about this result. Since this has no z dependence, it is not obvious
how we would recover the non-radial portion of the electric field from this potential using
E = −∇φ? Let’s calculate the electric field from eq. (E.10) explicitly

(E.13)

E = −
λ0

4πε0
∇ ln

b +

√
ρ2 + b2

a +

√
ρ2 + a2

= −
λ0ρ̂

4πε0

∂

∂ρ
ln

b +

√
ρ2 + b2

a +

√
ρ2 + a2

= −
λ0ρ̂

4πε0

 1

b +

√
ρ2 + b2

ρ√
ρ2 + b2

−
1

a +

√
ρ2 + a2

ρ√
ρ2 + a2


= −

λ0ρ̂

4πε0ρ

−b +

√
ρ2 + b2√

ρ2 + b2
−
−a +

√
ρ2 + a2√

ρ2 + a2


=

λ0ρ̂

4πε0ρ

 b√
ρ2 + b2

−
a√

ρ2 + a2

 .
This recovers the radial component of the field from eq. (E.8), but where did the ẑ component

go? The required potential appears to be

(E.14)φ(ρ, z) =
λ0

4πε0
ln

b +

√
ρ2 + b2

a +

√
ρ2 + a2

−
zλ0

4πε0

 1√
ρ2 + b2

−
1√

ρ2 + a2

 .
When computing the electric field E(ρ, θ, z), it was convenient to pick the coordinate system

so that z = 0. Doing this with the potential gives the wrong answers. The reason for this appears
to be that this kills the potential term that is linear in z before taking its gradient, and we need
that term to have the ẑ field component that is expected for a charge distribution that is non-
symmetric about the origin on the z-axis!

Finite line charge potential. Take II. Let the point at which the potential is evaluated be

(E.15)x = ρρ̂ + zẑ,

and the charge point be

(E.16)x′ = z′ẑ.
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This gives

(E.17)

φ(ρ, z) =
λ0

4πε0

∫ b

a

dz′∣∣∣ρ2 + (z − z′)2
∣∣∣

=
λ0

4πε0

∫ b−z

a−z

du∣∣∣ρ2 + u2
∣∣∣

=
λ0

4πε0
ln

(
u +

√
ρ2 + u2

)∣∣∣∣∣∣a−z

b−z

=
λ0

4πε0
ln

b − z +

√
ρ2 + (b − z)2

a − z +

√
ρ2 + (a − z)2

.

The limit of this potential a = −∆/2 → −∞, b = ∆/2 → ∞ doesn’t exist in any strict sense.
If we are cavalier about the limits, as in eq. (E.12), this can be evaluated as

(E.18)φ ≈
λ0

4πε0
(−2 ln ρ + constant) .

however, the constant (ln ∆2/2) is infinite, so there isn’t really a good justification for using
that constant as the potential reference point directly.

It seems that the “right” way to calculate the potential for the infinite distribution, is to

• Calculate the field from the potential.

• Take the PV limit of that field with the charge distribution extending to infinity.

• Compute the corresponding potential from this limiting value of the field.

Doing that doesn’t blow up. That field calculation, for the finite case, should include a ẑ
component. To verify, let’s take the respective derivatives

(E.19)

−
∂

∂z
φ = −

λ0

4πε0


−1 + z−b√

ρ2 + (b − z)2

b − z +

√
ρ2 + (b − z)2

−

−1 + z−a√
ρ2 + (a − z)2

a − z +

√
ρ2 + (a − z)2


=

λ0

4πε0


1 + b−z√

ρ2 + (b − z)2

b − z +

√
ρ2 + (b − z)2

−

1 + a−z√
ρ2 + (a − z)2

a − z +

√
ρ2 + (a − z)2


=

λ0

4πε0

 1√
ρ2 + (b − z)2

−
1√

ρ2 + (a − z)2

 ,
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and

(E.20)

−
∂

∂ρ
φ = −

λ0

4πε0


ρ√

ρ2 + (b − z)2

b − z +

√
ρ2 + (b − z)2

−

ρ√
ρ2 + (a − z)2

a − z +

√
ρ2 + (a − z)2


= −

λ0

4πε0


ρ

(
−(b − z) +

√
ρ2 + (b − z)2

)
ρ2

√
ρ2 + (b − z)2

−

ρ

(
−(a − z) +

√
ρ2 + (a − z)2

)
ρ2

√
ρ2 + (a − z)2


=

λ0

4πε0ρ

 b − z√
ρ2 + (b − z)2

−
a − z√

ρ2 + (a − z)2

 .
Putting the pieces together, the electric field is

E =
λ0

4πε0

 ρ̂ρ
 b − z√

ρ2 + (b − z)2
−

a − z√
ρ2 + (a − z)2

 + ẑ

 1√
ρ2 + (b − z)2

−
1√

ρ2 + (a − z)2


 .

(E.21)

This has a PV limit of eq. (E.2) at z = 0, and also for the finite case, has the ẑ field component
that was obtained when the field was obtained by direct integration.

Conclusions

• We have to evaluate the potential at all points in space, not just on the axis that we evaluate
the field on (should we choose to do so).

• In this case, we found that it was not directly meaningful to take the limit of a potential
distribution. We can, however, compute the field from a potential for a finite charge distri-
bution, take the limit of that field, and then calculate the corresponding potential for the
infinite distribution.

Is there a more robust mechanism that can be used to directly calculate the potential for an
infinite charge distribution, instead of calculating the potential from the field of such an infinite
distribution?

I think that were things go wrong is that the integral of eq. (E.10) does not apply to charge
distributions that are not finite on the infinite range z ∈ [−∞,∞]. That solution was obtained
by utilizing an all-space Green’s function, and the boundary term in that Green’s analysis was
assumed to tend to zero. That isn’t the case when the charge distribution is λ0δ(z).





F
G R A D I E N T, D I V E R G E N C E , C U R L A N D L A P L AC I A N I N
C Y L I N D R I C A L C O O R D I NAT E S .

In class it was suggested that the identity

(F.1)∇
2A = ∇ (∇ · A) − ∇ × (∇ × A) ,

can be used to compute the Laplacian in non-rectangular coordinates. Is that the easiest way
to do this?

How about just sequential applications of the gradient on the vector? Let’s start with the
vector product of the gradient and the vector. First recall that the cylindrical representation of
the gradient is

(F.2)∇ = ρ̂∂ρ +
φ̂

ρ
∂φ + ẑ∂z,

where

(F.3)
ρ̂ = e1ee1e2φ

φ̂ = e2ee1e2φ

Taking φ derivatives of eq. (F.3), we have

(F.4)
∂φρ̂ = e1e1e2ee1e2φ = e2ee1e2φ = φ̂

∂φφ̂ = e2e1e2ee1e2φ = −e1ee1e2φ = −ρ̂.

The gradient of a vector A = ρ̂Aρ + φ̂Aφ + ẑAz is
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(F.5)

∇A =

(
ρ̂∂ρ +

φ̂

ρ
∂φ + ẑ∂z

) (
ρ̂Aρ + φ̂Aφ + ẑAz

)
= ρ̂∂ρ

(
ρ̂Aρ + φ̂Aφ + ẑAz

)
+
φ̂

ρ
∂φ

(
ρ̂Aρ + φ̂Aφ + ẑAz

)
+ ẑ∂z

(
ρ̂Aρ + φ̂Aφ + ẑAz

)
= ρ̂

(
ρ̂∂ρAρ + φ̂∂ρAφ + ẑ∂ρAz

)
+
φ̂

ρ

(
∂φ(ρ̂Aρ) + ∂φ(φ̂Aφ) + ẑ∂φAz

)
+ ẑ

(
ρ̂∂zAρ + φ̂∂zAφ + ẑ∂zAz

)
= ∂ρAρ + ρ̂φ̂∂ρAφ + ρ̂ẑ∂ρAz

+
1
ρ

(
Aρ + φ̂ρ̂∂φAρ − φ̂ρ̂Aφ + ∂φAφ + φ̂ẑ∂φAz

)
+ ẑρ̂∂zAρ + ẑφ̂∂zAφ + ∂zAz

= ∂ρAρ +
1
ρ
(Aρ + ∂φAφ) + ∂zAz

+ ẑρ̂ (∂zAρ − ∂ρAz)

+ φ̂ẑ
(
1
ρ
∂φAz − ∂zAφ

)
+ ρ̂φ̂

(
∂ρAφ −

1
ρ
(∂φAρ − Aφ)

)
,

As expected, we see that the gradient splits nicely into a dot and curl

∇A = ∇ ·A +∇∧A = ∇ ·A + ρ̂φ̂ẑ(∇ ×A), (F.6)

where the cylindrical representation of the divergence is seen to be

(F.7)∇ · A =
1
ρ
∂ρ(ρAρ) +

1
ρ
∂φAφ + ∂zAz,

and the cylindrical representation of the curl is

(F.8)∇ × A = ρ̂

(
1
ρ
∂φAz − ∂zAφ

)
+ φ̂

(
∂zAρ − ∂ρAz

)
+

1
ρ

ẑ
(
∂ρ(ρAφ) − ∂φAρ

)
.

Should we want to, it is now possible to evaluate the Laplacian of A using eq. (F.1) , which
will have the following components
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ρ̂ ·
(
∇

2A
)

= ∂ρ

(
1
ρ
∂ρ(ρAρ) +

1
ρ
∂φAφ + ∂zAz

)
−

(
1
ρ
∂φ

(
1
ρ

(
∂ρ(ρAφ) − ∂φAρ

))
− ∂z

(
∂zAρ − ∂ρAz

))
= ∂ρ

(
1
ρ
∂ρ(ρAρ)

)
+ ∂ρ

(
1
ρ
∂φAφ

)
+ ∂ρzAz −

1
ρ2 ∂φρ(ρAφ) +

1
ρ2 ∂φφAρ + ∂zzAρ − ∂zρAz

= ∂ρ

(
1
ρ
∂ρ(ρAρ)

)
+

1
ρ2 ∂φφAρ + ∂zzAρ −

1
ρ2 ∂φAφ +

1
ρ
∂ρφAφ −

1
ρ2 ∂φAφ −

1
ρ
∂φρAφ

= ∂ρ

(
1
ρ
∂ρ(ρAρ)

)
+

1
ρ2 ∂φφAρ + ∂zzAρ −

2
ρ2 ∂φAφ

=
1
ρ
∂ρ

(
ρ∂ρAρ

)
+

1
ρ2 ∂φφAρ + ∂zzAρ −

Aρ
ρ2 −

2
ρ2 ∂φAφ,

(F.9a)

φ̂ ·
(
∇

2A
)

=
1
ρ
∂φ

(
1
ρ
∂ρ(ρAρ) +

1
ρ
∂φAφ +∂zAz

)
−

((
∂z

(
1
ρ
∂φAz−∂zAφ

)
−∂ρ

(
1
ρ

(
∂ρ(ρAφ)−∂φAρ

))))
=

1
ρ2 ∂φρ(ρAρ) +

1
ρ2 ∂φφAφ +

1
ρ
∂φzAz −

1
ρ
∂zφAz + ∂zzAφ + ∂ρ

(
1
ρ
∂ρ(ρAφ)

)
− ∂ρ

(
1
ρ
∂φAρ

)
= ∂ρ

(
1
ρ
∂ρ(ρAφ)

)
+

1
ρ2 ∂φφAφ + ∂zzAφ +

1
ρ2 ∂φρ(ρAρ) +

1
ρ
∂φzAz −

1
ρ
∂zφAz − ∂ρ

(
1
ρ
∂φAρ

)
= ∂ρ

(
1
ρ
∂ρ(ρAφ)

)
+

1
ρ2 ∂φφAφ + ∂zzAφ +

1
ρ2 ∂φAρ +

1
ρ
∂φρAρ +

1
ρ2 ∂φAρ −

1
ρ
∂ρφAρ

= ∂ρ

(
1
ρ
∂ρ(ρAφ)

)
+

1
ρ2 ∂φφAφ + ∂zzAφ +

2
ρ2 ∂φAρ

=
1
ρ
∂ρ

(
ρ∂ρAφ

)
+

1
ρ2 ∂φφAφ + ∂zzAφ +

2
ρ2 ∂φAρ −

Aφ
ρ2 ,

(F.9b)

ẑ ·
(
∇

2A
)

= ∂z

(
1
ρ
∂ρ(ρAρ) +

1
ρ
∂φAφ + ∂zAz

)
−

1
ρ

(
∂ρ

(
ρ
(
∂zAρ − ∂ρAz

))
− ∂φ

(
1
ρ
∂φAz − ∂zAφ

))
=

1
ρ
∂zρ(ρAρ) +

1
ρ
∂zφAφ + ∂zzAz −

1
ρ
∂ρ

(
ρ∂zAρ

)
+

1
ρ
∂ρ

(
ρ∂ρAz

)
+

1
ρ2 ∂φφAz −

1
ρ
∂φzAφ

=
1
ρ
∂ρ

(
ρ∂ρAz

)
+

1
ρ2 ∂φφAz +∂zzAz +

1
ρ
∂zAρ+∂zρAρ+

1
ρ
∂zφAφ−

1
ρ
∂zAρ−∂ρzAρ−

1
ρ
∂φzAφ

=
1
ρ
∂ρ

(
ρ∂ρAz

)
+

1
ρ2 ∂φφAz + ∂zzAz

(F.9c)

Evaluating these was a fairly tedious and mechanical job, and would have been better suited
to a computer algebra system than by hand as done here.
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Explicit cylindrical Laplacian Let’s try this a different way. The most obvious potential strat-
egy is to just apply the Laplacian to the vector itself, but we need to include the unit vectors in
such an operation

(F.10)∇
2A = ∇2

(
ρ̂Aρ + φ̂Aφ + ẑAz

)
.

First we need to know the explicit form of the cylindrical Laplacian. From the painful expan-
sion, we can guess that it is

(F.11)∇
2ψ =

1
ρ
∂ρ

(
ρ∂ρψ

)
+

1
ρ2 ∂φφψ + ∂zzψ.

Let’s check that explicitly. Here I use the vector product where ρ̂2 = φ̂
2

= ẑ2 = 1, and these
vectors anticommute when different

∇
2ψ =

(
ρ̂∂ρ +

φ̂

ρ
∂φ + ẑ∂z

) (
ρ̂∂ρψ +

φ̂

ρ
∂φψ + ẑ∂zψ

)
= ρ̂∂ρ

(
ρ̂∂ρψ +

φ̂

ρ
∂φψ + ẑ∂zψ

)
+
φ̂

ρ
∂φ

(
ρ̂∂ρψ +

φ̂

ρ
∂φψ + ẑ∂zψ

)
+ ẑ∂z

(
ρ̂∂ρψ +

φ̂

ρ
∂φψ + ẑ∂zψ

)
= ∂ρρψ + ρ̂φ̂∂ρ

(
1
ρ
∂φψ

)
+ ρ̂ẑ∂ρzψ +

φ̂

ρ
∂φ

(
ρ̂∂ρψ

)
+
φ̂

ρ
∂φ

(
φ̂

ρ
∂φψ

)
+
φ̂ẑ
ρ
∂φzψ + ẑρ̂∂zρψ +

ẑφ̂
ρ
∂zφψ + ∂zzψ

= ∂ρρψ +
1
ρ
∂ρψ +

1
ρ2 ∂φφψ + ∂zzψ + ρ̂φ̂

(
−

1
ρ2 ∂φψ +

1
ρ
∂ρφψ −

1
ρ
∂φρψ +

1
ρ2 ∂φψ

)
+ ẑρ̂

(
−∂ρzψ + ∂zρψ

)
+ φ̂ẑ

(
1
ρ
∂φzψ −

1
ρ
∂zφψ

)
= ∂ρρψ +

1
ρ
∂ρψ +

1
ρ2 ∂φφψ + ∂zzψ,

(F.12)

so the Laplacian operator is

∇
2 =

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂2

∂φ2 +
∂2

∂z2 . (F.13)

All the bivector grades of the Laplacian operator are seen to explicitly cancel, regardless of
the grade of ψ, just as if we had expanded the scalar Laplacian as a dot product ∇2ψ = ∇ · (∇ψ).
Unlike such a scalar expansion, this derivation is seen to be valid for any grade ψ. We know
now that we can trust this result when ψ is a scalar, a vector, a bivector, a trivector, or even a
multivector.
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Vector Laplacian Now that we trust that the typical scalar form of the Laplacian applies
equally well to multivectors as it does to scalars, that cylindrical coordinate operator can now
be applied to a vector. Consider the projections onto each of the directions in turn

(F.14)∇
2
(
ρ̂Aρ

)
= ρ̂

1
ρ
∂ρ

(
ρ∂ρAρ

)
+

1
ρ2 ∂φφ

(
ρ̂Aρ

)
+ ρ̂∂zzAρ

(F.15)
∂φφ

(
ρ̂Aρ

)
= ∂φ

(
φ̂Aρ + ρ̂∂φAρ

)
= −ρ̂Aρ + φ̂∂φAρ + φ̂∂φAρ + ρ̂∂φφAρ
= ρ̂

(
∂φφAρ − Aρ

)
+ 2φ̂∂φAρ

so this component of the vector Laplacian is

(F.16)
∇

2
(
ρ̂Aρ

)
= ρ̂

(
1
ρ
∂ρ

(
ρ∂ρAρ

)
+

1
ρ2 ∂φφAρ −

1
ρ2 Aρ + ∂zzAρ

)
+ φ̂

(
2

1
ρ2 ∂φAρ

)
= ρ̂

(
∇

2Aρ −
1
ρ2 Aρ

)
+ φ̂

2
ρ2 ∂φAρ.

The Laplacian for the projection of the vector onto the φ̂ direction is

(F.17)∇
2
(
φ̂Aφ

)
= φ̂

1
ρ
∂ρ

(
ρ∂ρAφ

)
+

1
ρ2 ∂φφ

(
φ̂Aφ

)
+ φ̂∂zzAφ,

Again, since the unit vectors are φ dependent, the φ derivatives have to be treated carefully

(F.18)
∂φφ

(
φ̂Aφ

)
= ∂φ

(
−ρ̂Aφ + φ̂∂φAφ

)
= −φ̂Aφ − ρ̂∂φAφ − ρ̂∂φAφ + φ̂∂φφAφ
= −2ρ̂∂φAφ + φ̂

(
∂φφAφ − Aφ

)
,

so the Laplacian of this projection is

(F.19)
∇

2
(
φ̂Aφ

)
= φ̂

(
1
ρ
∂ρ

(
ρ∂ρAφ

)
+ φ̂∂zzAφ,

1
ρ2 ∂φφAφ −

Aφ
ρ2

)
− ρ̂

2
ρ2 ∂φAφ

= φ̂

(
∇

2Aφ −
Aφ
ρ2

)
− ρ̂

2
ρ2 ∂φAφ.

Since ẑ is fixed we have
(F.20)∇

2ẑAz = ẑ∇2Az.

Putting all the pieces together we have

∇
2A = ρ̂

(
∇

2Aρ −
1
ρ2 Aρ −

2
ρ2 ∂φAφ

)
+ φ̂

(
∇

2Aφ −
Aφ
ρ2 +

2
ρ2 ∂φAρ

)
+ ẑ∇2Az. (F.21)

This matches the result eq. (F.9) from the painful expansion of ∇ (∇ ·A) −∇ × (∇ ×A).





G
G R A D I E N T, D I V E R G E N C E , C U R L A N D L A P L AC I A N I N
S P H E R I C A L C O O R D I NAT E S .

Unit vectors Two of the spherical unit vectors we can immediately write by inspection.

(G.1)
r̂ = e1 sin θ cos φ + e2 sin θ sin φ + e3 cos θ

φ̂ = −e1 sin θ + e2 cos φ

We can compute θ̂ by utilizing the right hand triplet property

(G.2)

θ̂ = φ̂ × r̂

=

∣∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

−S φ Cφ 0

S θCφ S θS φ Cθ

∣∣∣∣∣∣∣∣∣∣∣
= e1

(
CθCφ

)
+ e2

(
CθS φ

)
+ e3

(
−S θ

(
S 2
φ + C2

φ

))
= e1 cos θ cos φ + e2 cos θ sin φ − e3 sin θ.

Here I’ve used Cθ = cos θ, S φ = sin φ, · · · as a convenient shorthand. Observe that with
i = e1e2, these unit vectors admit a small factorization that makes further manipulation easier

r̂ = e1eiφ sin θ + e3 cos θ

θ̂ = cos θe1eiφ − sin θe3

φ̂ = e2eiφ

(G.3)

It should also be the case that r̂θ̂φ̂ = I, where I = e1e2e3 = e123 is the R3 pseudoscalar,
which is straightforward to check

(G.4)

r̂θ̂φ̂ =
(
e1eiφ sin θ + e3 cos θ

) (
cos θe1eiφ − sin θe3

)
e2eiφ

=
(
sin θ cos θ − cos θ sin θ + e31eiφ

(
cos2 θ + sin2 θ

))
e2eiφ

= e31e2e−iφeiφ

= e123.

This property could also have been used to compute θ̂.

139
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Gradient To compute the gradient, note that the coordinate vectors for the spherical parame-
terization are

(G.5a)

xr =
∂r
∂r

=
∂(rr̂)
∂r

= r̂ + r
∂r̂
∂r

= r̂,

(G.5b)

xθ =
∂(rr̂)
∂θ

= r
∂

∂θ

(
S θe1eiφ + Cθe3

)
= r

∂

∂θ

(
Cθe1eiφ − S θe3

)
= rθ̂,

(G.5c)

xφ =
∂(rr̂)
∂φ

= r
∂

∂φ

(
S θe1eiφ + Cθe3

)
= rS θe2eiφ

= r sin θφ̂.

Since these are all normal, the dual vectors defined by x j · xk = δ
j
k, can be obtained by

inspection

xr = r̂

xθ =
1
r
θ̂

xφ =
1

r sin θ
φ̂.

(G.6)

The gradient follows immediately

(G.7)∇ = xr ∂

∂r
+ xθ

∂

∂θ
+ xφ

∂

∂φ̂
,
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or

∇ = r̂
∂

∂r
+
θ̂

r
∂

∂θ
+

φ̂

r sin θ
∂

∂φ̂
. (G.8)

More information on this general dual-vector technique of computing the gradient in curvi-
linear coordinate systems can be found in [9].

Partials To compute the divergence, curl and Laplacian, we’ll need the partials of each of the
unit vectors ∂r̂/∂θ, ∂r̂/∂φ, ∂θ̂/∂θ, ∂θ̂/∂φ, ∂φ̂/∂φ.

The θ̂ partials are

(G.9)

∂θ̂

∂θ
=

∂

∂θ

(
Cθe1eiφ − S θe3

)
= −S θe1eiφ −Cθe3

= −r̂,

(G.10)

∂θ̂

∂φ
=

∂

∂φ

(
Cθe1eiφ − S θe3

)
= Cθe2eiφ

= Cθφ̂.

The φ̂ partials are

(G.11)
∂φ̂

∂θ
=

∂

∂θ
e2eiφ

= 0.

(G.12)

∂φ̂

∂φ
=

∂

∂φ
e2eiφ

= −e1eiφ

= −r̂
〈
r̂e1eiφ

〉
− θ̂

〈
θ̂e1eiφ

〉
− φ̂

〈
φ̂e1eiφ

〉
= −r̂

〈(
e1eiφS θ + e3Cθ

)
e1eiφ

〉
− θ̂

〈(
Cθe1eiφ − S θe3

)
e1eiφ

〉
= −r̂

〈
e−iφS θeiφ

〉
− θ̂

〈
Cθe−iφeiφ

〉
= −r̂S θ − θ̂Cθ.

The r̂ partials are were computed as a side effect of evaluating xθ, and xφ, and are
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(G.13)
∂r̂
∂θ

= θ̂,

(G.14)
∂r̂
∂φ

= S θφ̂.

In summary

∂θr̂ = θ̂

∂φr̂ = S θφ̂

∂θθ̂ = −r̂
∂φθ̂ = Cθφ̂

∂θφ̂ = 0

∂φφ̂ = −r̂S θ − θ̂Cθ.

(G.15)

Divergence and curl. The divergence and curl can be computed from the vector product of
the spherical coordinate gradient and the spherical representation of a vector. That is

∇A = ∇ ·A +∇∧A = ∇ ·A + I∇ ×A. (G.16)

That gradient vector product is

(G.17)

∇A =

(
r̂∂r +

θ̂

r
∂θ +

φ̂

rS θ
∂φ

) (
r̂Ar + θ̂Aθ + φ̂Aφ

)
= r̂∂r

(
r̂Ar + θ̂Aθ + φ̂Aφ

)
+
θ̂

r
∂θ

(
r̂Ar + θ̂Aθ + φ̂Aφ

)
+

φ̂

rS θ
∂φ̂

(
r̂Ar + θ̂Aθ + φ̂Aφ

)
=

(
∂rAr + r̂θ̂∂rAθ + r̂φ̂∂rAφ

)
+

1
r

(
θ̂(∂θr̂)Ar + θ̂(∂θθ̂)Aθ + θ̂(∂θφ̂)Aφ + θ̂r̂∂θAr + ∂θAθ + θ̂φ̂∂θAφ

)
+

1
rS θ

(
φ̂(∂φr̂)Ar + φ̂(∂φθ̂)Aθ + φ̂(∂φφ̂)Aφ + φ̂r̂∂φAr + φ̂θ̂∂φAθ + ∂φAφ

)
=

(
∂rAr + r̂θ̂∂rAθ + r̂φ̂∂rAφ

)
+

1
r

(
θ̂(θ̂)Ar + θ̂(−r̂)Aθ + θ̂(0)Aφ + θ̂r̂∂θAr + ∂θAθ + θ̂φ̂∂θAφ

)
+

1
rS θ

(
φ̂(S θφ̂)Ar + φ̂(Cθφ̂)Aθ − φ̂(r̂S θ + θ̂Cθ)Aφ + φ̂r̂∂φAr + φ̂θ̂∂φAθ + ∂φAφ

)
.
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The scalar component of this is the divergence

(G.18)

∇ · A = ∂rAr +
Ar

r
+

1
r
∂θAθ +

1
rS θ

(
S θAr + CθAθ + ∂φAφ

)
= ∂rAr + 2

Ar

r
+

1
r
∂θAθ +

1
rS θ

CθAθ +
1

rS θ
∂φAφ

= ∂rAr + 2
Ar

r
+

1
r
∂θAθ +

1
rS θ

CθAθ +
1

rS θ
∂φAφ,

which can be factored as

∇ ·A =
1
r2 ∂r(r2Ar) +

1
rS θ

∂θ(S θAθ) +
1

rS θ
∂φAφ. (G.19)

The bivector grade of ∇A is the bivector curl

∇ ∧ A =
(
r̂θ̂∂rAθ + r̂φ̂∂rAφ

)
+

1
r

(
θ̂(−r̂)Aθ + θ̂r̂∂θAr + θ̂φ̂∂θAφ

)
+

1
rS θ

(
−φ̂(r̂S θ + θ̂Cθ)Aφ + φ̂r̂∂φAr + φ̂θ̂∂φAθ

)
=

(
r̂θ̂∂rAθ − φ̂r̂∂rAφ

)
+

1
r

(
r̂θ̂Aθ − r̂θ̂∂θAr + θ̂φ̂∂θAφ

)
+

1
rS θ

(
−φ̂r̂S θAφ + θ̂φ̂CθAφ + φ̂r̂∂φAr − θ̂φ̂∂φAθ

)
= θ̂φ̂

(
1

rS θ
CθAφ +

1
r
∂θAφ −

1
rS θ

∂φAθ

)
+ φ̂r̂

(
−∂rAφ +

1
rS θ

(
−S θAφ + ∂φAr

))
+ r̂θ̂

(
∂rAθ +

1
r

Aθ −
1
r
∂θAr

)
= Ir̂

(
1

rS θ
∂θ(S θAφ) −

1
rS θ

∂φAθ

)
+ Iθ̂

(
1

rS θ
∂φAr −

1
r
∂r(rAφ)

)
+ Iφ̂

(
1
r
∂r(rAθ) −

1
r
∂θAr

)
(G.20)

This gives

∇ ×A = r̂
(

1
rS θ

∂θ(S θAφ) −
1

rS θ
∂φAθ

)
+ θ̂

(
1

rS θ
∂φAr −

1
r
∂r(rAφ)

)
+ φ̂

(
1
r
∂r(rAθ) −

1
r
∂θAr

)
.

(G.21)

This and the divergence result above both check against the back cover of [8].
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Laplacian Using the divergence and curl it’s possible to compute the Laplacian from those,
but we saw in cylindrical coordinates that it was much harder to do it that way than to do it
directly.

(G.22)

∇
2ψ =

(
r̂∂r +

θ̂

r
∂θ +

φ̂

rS θ
∂φ

) (
r̂∂rψ +

θ̂

r
∂θψ +

φ̂

rS θ
∂φψ

)
= ∂rrψ + r̂θ̂∂r

(
1
r
∂θψ

)
+ r̂φ̂

1
S θ
∂r

(
1
r
∂φψ

)
+
θ̂

r
∂θ (r̂∂rψ) +

θ̂

r2 ∂θ
(
θ̂∂θψ

)
+
θ̂

r2 ∂θ

(
φ̂

S θ
∂φψ

)
+

φ̂

rS θ
∂φ (r̂∂rψ) +

φ̂

r2S θ
∂φ

(
θ̂∂θψ

)
+

φ̂

r2S 2
θ

∂φ
(
φ̂∂φψ

)
= ∂rrψ + r̂θ̂∂r

(
1
r
∂θψ

)
+ r̂φ̂

1
S θ
∂r

(
1
r
∂φψ

)
+
θ̂r̂
r
∂θ (∂rψ) +

1
r2 ∂θθψ +

θ̂φ̂

r2 ∂θ

(
1

S θ
∂φψ

)
+
φ̂r̂
rS θ

∂φrψ +
φ̂θ̂

r2S θ
∂φθψ +

1
r2S 2

θ

∂φφψ

+
θ̂

r
(∂θr̂)∂rψ +

θ̂

r2 (∂θθ̂)∂θψ +
θ̂

r2 (∂θφ̂)
φ̂

S θ
∂φψ

+
φ̂

rS θ
(∂φr̂)∂rψ +

φ̂

r2S θ
(∂φθ̂)∂θψ +

φ̂

r2S 2
θ

(∂φφ̂)∂φψ

= ∂rrψ + r̂θ̂∂r

(
1
r
∂θψ

)
+ r̂φ̂

1
S θ
∂r

(
1
r
∂φψ

)
+
θ̂r̂
r
∂θ (∂rψ) +

1
r2 ∂θθψ +

θ̂φ̂

r2 ∂θ

(
1

S θ
∂φψ

)
+
φ̂r̂
rS θ

∂φrψ +
φ̂θ̂

r2S θ
∂φθψ +

1
r2S 2

θ

∂φφψ

+
θ̂

r
(θ̂)∂rψ +

θ̂

r2 (−r̂)∂θψ +
θ̂

r2 (0)
φ̂

S θ
∂φψ

+
φ̂

rS θ
(S θφ̂)∂rψ +

φ̂

r2S θ
(Cθφ̂)∂θψ +

φ̂

r2S 2
θ

(−r̂S θ − θ̂Cθ)∂φψ

All the bivector factors are expected to cancel out, but this should be checked. Those with an
r̂θ̂ factor are



gradient, divergence , curl and laplacian in spherical coordinates . 145

(G.23)∂r

(
1
r
∂θψ

)
−

1
r
∂θrψ +

1
r2 ∂θψ = −

1
r2 ∂θψ +

1
r
∂rθψ −

1
r
∂θrψ +

1
r2 ∂θψ

= 0,

and those with a θ̂φ̂ factor are

1
r2 ∂θ

(
1

S θ
∂φψ

)
−

1
r2S θ

∂φθψ +
1

r2S 2
θ

Cθ∂φψ = −
1
r2

Cθ

S 2
θ

∂φψ+
1

r2S θ
∂θφψ−

1
r2S θ

∂φθψ+
1

r2S 2
θ

Cθ∂φψ

= 0,
(G.24)

and those with a φ̂r̂ factor are

(G.25)−
1

S θ
∂r

(
1
r
∂φψ

)
+

1
rS θ

∂φrψ −
1

r2S 2
θ

S θ∂φψ =
1

S θ

1
r2 ∂φψ −

1
rS θ

∂rφψ +
1

rS θ
∂φrψ −

1
r2S θ

∂φψ

= 0.

This leaves

(G.26)∇
2ψ = ∂rrψ +

2
r
∂rψ +

1
r2 ∂θθψ +

1
r2S θ

Cθ∂θψ +
1

r2S 2
θ

∂φφψ.

This factors nicely as

∇
2ψ =

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2 , (G.27)

which checks against the back cover of Jackson. Here it has been demonstrated explicitly that
this operator expression is valid for multivector fields ψ as well as scalar fields ψ.





H
V E C T O R WAV E E Q UAT I O N I N S P H E R I C A L C O O R D I NAT E S

For a vector A in spherical coordinates, let’s compute the Laplacian

(H.1)∇
2A,

to see the form of the wave equation. The spherical vector representation has a curvilinear
basis

(H.2)A = r̂Ar + θ̂Aθ + φ̂Aφ,

and the spherical Laplacian has been found to have the representation

(H.3)∇
2ψ =

1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2 .

Evaluating the Laplacian will require the following curvilinear basis derivatives

(H.4)

∂θr̂ = θ̂

∂θθ̂ = −r̂
∂θφ̂ = 0

∂φr̂ = S θφ̂

∂φθ̂ = Cθφ̂

∂φφ̂ = −r̂S θ − θ̂Cθ.

We’ll need to evaluate a number of derivatives. Starting with the r̂ components

(H.5a)∂r
(
r2∂r (r̂ψ)

)
= r̂∂r

(
r2∂rψ

)

(H.5b)

∂θ (S θ∂θ (r̂ψ)) = ∂θ
(
S θ(θ̂ψ + r̂∂θψ)

)
= Cθ(θ̂ψ + r̂∂θψ) + S θ∂θ(θ̂ψ + r̂∂θψ)
= Cθ(θ̂ψ + r̂∂θψ) + S θ∂θ((∂θθ̂)ψ + (∂θr̂)∂θψ) + S θ∂θ(θ̂∂θψ + r̂∂θθψ)
= Cθ(θ̂ψ + r̂∂θψ) + S θ((−r̂)ψ + (θ̂)∂θψ) + S θ(θ̂∂θψ + r̂∂θθψ)
= r̂ (Cθ∂θψ − S θψ + S θ∂θθψ) + θ̂ (Cθψ + 2S θ∂θψ)
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(H.5c)

∂φφ (r̂ψ) = ∂φ
(
(∂φr̂)ψ + r̂∂φψ

)
= ∂φ

(
(S θφ̂)ψ + r̂∂φψ

)
= S θ∂φ(φ̂ψ) + ∂φ

(
r̂∂φψ

)
= S θ(∂φφ̂)ψ + S θφ̂∂φψ + (∂φr̂)∂φψ + r̂∂φφψ
= S θ(−S θr̂ −Cθθ̂)ψ + S θφ̂∂φψ + (S θφ̂)∂φψ + r̂∂φφψ
= r̂

(
−S 2

θψ + ∂φφψ
)

+ θ̂ (−S θCθψ) + φ̂
(
2S θφ̂∂φψ

)
This gives

∇
2(r̂Ar) = r̂

 1
r2 ∂r

(
r2∂rAr

)
+

1
r2S θ

(Cθ∂θAr − S θAr + S θ∂θθAr) +
1

r2S 2
θ

(
−S 2

θAr + ∂φφAr
)

+ θ̂

(
1

r2S θ
(CθAr + 2S θ∂θAr) −

1
r2S θ

S θCθAr

)
+ φ̂

 1
r2S 2

θ

2S θ∂φAr


= r̂

(
∇

2Ar −
2
r2 Ar

)
+
θ̂

r2

(
Cθ

S θ
Ar + 2∂θAr −CθAr

)
+ φ̂

2
r2S θ

∂φAr.

(H.6)

Next, let’s compute the derivatives of the θ̂ projection.

(H.7a)∂r
(
r2∂r

(
θ̂ψ

))
= θ̂∂r

(
r2∂rψ

)

(H.7b)

∂θ
(
S θ∂θ

(
θ̂ψ

))
= ∂θ

(
S θ

(
(∂θθ̂)ψ + θ̂∂θψ

))
= ∂θ

(
S θ

(
(−r̂)ψ + θ̂∂θψ

))
= Cθ

(
−r̂ψ + θ̂∂θψ

)
+ S θ

(
−(∂θr̂)ψ − r̂∂θψ + (∂θθ̂)∂θψ + θ̂∂θθψ

)
= Cθ

(
−r̂ψ + θ̂∂θψ

)
+ S θ

(
−(θ̂)ψ − r̂∂θψ + (−r̂)∂θψ + θ̂∂θθψ

)
= r̂ (−Cθψ − 2S θ∂θψ) + θ̂ (+Cθ∂θψ − S θψ + S θ∂θθψ)
= r̂ (−Cθψ − 2S θ∂θψ) + θ̂ (+∂θ(S θ∂θψ) − S θψ)

(H.7c)

∂φφ
(
θ̂ψ

)
= ∂φ

(
(∂φθ̂)ψ + θ̂∂φψ

)
= ∂φ

(
(Cθφ̂)ψ + θ̂∂φψ

)
= Cθ∂φ(φ̂ψ) + ∂φ(θ̂∂φψ)
= Cθ(∂φφ̂)ψ + Cθφ̂∂φψ + (∂φθ̂)∂φψ + θ̂∂φφψ

= Cθ(−r̂S θ − θ̂Cθ)ψ + Cθφ̂∂φψ + (Cθφ̂)∂φψ + θ̂∂φφψ

= −r̂CθS θψ + θ̂
(
−CθCθψ + ∂φφψ

)
+ 2φ̂Cθ∂φψ,
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which gives

∇
2(θ̂Aθ) = r̂

 1
r2S θ

(−CθAθ − 2S θ∂θAθ) −
1

r2S 2
θ

CθS θAθ


+ θ̂

 1
r2 ∂r

(
r2∂rAθ

)
+

1
r2S θ

(+∂θ(S θ∂θAθ) − S θAθ) +
1

r2S 2
θ

(
−CθCθAθ + ∂φφAθ

)
+ φ̂

 1
r2S 2

θ

2Cθ∂φAθ


= −2r̂

1
r2S θ

∂θ(S θAθ) + θ̂

∇2Aθ −
1
r2 Aθ −

1
r2S 2

θ

C2
θAθ

 + 2φ̂
 1

r2S 2
θ

Cθ∂φAθ

 .
(H.8)

Finally, we can compute the derivatives of the φ̂ projection.

(H.9a)∂r
(
r2∂r

(
φ̂ψ

))
= φ̂∂r

(
r2∂rψ

)
(H.9b)∂θ

(
S θ∂θ

(
φ̂ψ

))
= φ̂∂θ (S θ∂θψ)

(H.9c)

∂φφ
(
φ̂ψ

)
= ∂φ

(
(∂φφ̂)ψ + φ̂∂φψ

)
= ∂φ

(
(−r̂S θ − θ̂Cθ)ψ + φ̂∂φψ

)
= −((∂φr̂)S θ + (∂φθ̂)Cθ)ψ − (r̂S θ + θ̂Cθ)∂φψ + (∂φφ̂∂φψ + φ̂∂φφψ

= −((S θφ̂)S θ + (Cθφ̂)Cθ)ψ − (r̂S θ + θ̂Cθ)∂φψ + (−r̂S θ − θ̂Cθ)∂φψ + φ̂∂φφψ

= −2r̂S θ∂φψ − 2θ̂Cθ∂φψ + φ̂
(
∂φφψ − ψ

)
,

which gives

(H.10)

∇
2
(
φ̂Aφ

)
= −2r̂

1
r2S θ

∂φAφ − 2θ̂
1

r2S 2
θ

Cθ∂φAφ

+ φ̂

 1
r2 ∂r

(
r2∂rAφ

)
+

1
r2S θ

∂θ
(
S θ∂θAφ

)
+

1
r2S 2

θ

(
∂φφAφ − Aφ

)
= −2r̂

1
r2S θ

∂φAφ − 2θ̂
1

r2S 2
θ

Cθ∂φAφ + φ̂

(
∇

2Aφ −
1
r2 Aφ

)
.

The vector Laplacian resolves into three augmented scalar wave equations, all highly coupled
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r̂ ·
(
∇

2A
)

= ∇2Ar −
2
r2 Ar −

2
r2S θ

∂θ(S θAθ) −
2

r2S θ
∂φAφ

θ̂ ·
(
∇

2A
)

=
1
r2

Cθ

S θ
Ar +

2
r2 ∂θAr −

1
r2 CθAr +∇2Aθ −

1
r2 Aθ −

1
r2S 2

θ

C2
θAθ − 2

1
r2S 2

θ

Cθ∂φAφ

φ̂ ·
(
∇

2A
)

=
2

r2S θ
∂φAr +

2
r2S 2

θ

Cθ∂φAθ +∇2Aφ −
1
r2 Aφ.

(H.11)

I’d guess one way to decouple these equations would be to impose a constraint that allows all
the non-wave equation terms in one of the component equations to be killed, and then substitute
that constraint into the remaining equations. Let’s try one such constraint

(H.12)Ar = −
1

S θ
∂θ(S θAθ) −

1
S θ
∂φAφ.

This gives

(H.13)

r̂ ·
(
∇

2A
)

= ∇2Ar

θ̂ ·
(
∇

2A
)

=

(
1
r2

Cθ

S θ
+

2
r2 ∂θ −

1
r2 Cθ

) (
−

1
S θ
∂θ(S θAθ) −

1
S θ
∂φAφ

)
+ ∇2Aθ −

1
r2 Aθ −

1
r2S 2

θ

C2
θAθ −

2
r2S 2

θ

Cθ∂φAφ

φ̂ ·
(
∇

2A
)

= −
2

r2S θ
∂φ

(
1

S θ
∂θ(S θAθ) +

1
S θ
∂φAφ

)
+

2
r2S 2

θ

Cθ∂φAθ + ∇2Aφ −
1
r2 Aφ

= −
2

r2S θ
∂θAθ −

2
r2S 2

θ

∂φφAθ + ∇2Aφ −
1
r2 Aφ

It looks like some additional cancellations may be had in the θ̂ projection of this constrained
vector Laplacian. I’m not inclined to try to take this reduction any further without a thorough
check of all the algebra (using Mathematica to do so would make sense).

I also guessing that such a solution might be how the TEr and TMr modes were defined,
but that doesn’t appear to be the case according to [2]. There the wave equation is formulated
in terms of the vector potentials (picking one to be zero and the other to be radial only). The
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solution obtained from such a potential wave equation then directly defines the TEr and TMr

modes. It would be interesting to see how the modes derived in that analysis transform with
application of the vector Laplacian derived above.





I
T R A N S V E R S E G AU G E

Jackson [8] has an interesting presentation of the transverse gauge. I’d like to walk through the
details of this, but first want to translate the preliminaries to SI units (if I had the 3rd edition I’d
not have to do this translation step).

Gauge freedom The starting point is noting that∇ ·B = 0 the magnetic field can be expressed
as a curl

(I.1)B = ∇ × A.

Faraday’s law now takes the form

(I.2)

0 = ∇ × E +
∂B
∂t

= ∇ × E +
∂

∂t
(∇ × A)

= ∇ ×

(
E +

∂A
∂t

)
.

Because this curl is zero, the interior sum can be expressed as a gradient

(I.3)E +
∂A
∂t
≡ −∇Φ.

This can now be substituted into the remaining two Maxwell’s equations.

(I.4)
∇ · D = ρv

∇ ×H = J +
∂D
∂t

For Gauss’s law, in simple media, we have

(I.5)
ρv = ε∇ · E

= ε∇ ·

(
−∇Φ −

∂A
∂t

)
For simple media again, the Ampere-Maxwell equation is

(I.6)
1
µ
∇ × (∇ × A) = J + ε

∂

∂t

(
−∇Φ −

∂A
∂t

)
.
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Expanding ∇ × (∇ ×A) = −∇2A +∇ (∇ ·A) gives

(I.7)−∇2A + ∇ (∇ · A) + εµ
∂2A
∂t2 = µJ − εµ∇

∂Φ
∂t
.

Maxwell’s equations are now reduced to

∇
2A −∇

(
∇ ·A + εµ

∂Φ
∂t

)
− εµ

∂2A
∂t2 = −µJ

∇
2Φ +

∂∇ ·A
∂t

= −
ρv

ε
.

(I.8)

There are two obvious constraints that we can impose

∇ ·A − εµ
∂Φ
∂t

= 0, (I.9)

or

∇ ·A = 0. (I.10)

The first constraint is the Lorentz gauge, which I’ve played with previously. It happens to be
really nice in a relativistic context since, in vacuum with a four-vector potential A = (Φ/c,A),
that is a requirement that the four-divergence of the four-potential vanishes (∂µAµ = 0).

Transverse gauge Jackson identifies the latter constraint as the transverse gauge, which I’m
less familiar with. With this gauge selection, we have

(I.11a)∇
2A − εµ

∂2A
∂t2 = −µJ + εµ∇

∂Φ
∂t

(I.11b)∇
2Φ = −

ρv

ε
.

What’s not obvious is the fact that the irrotational (zero curl) contribution due to Φ in
eq. (I.11a) cancels the corresponding irrotational term from the current. Jackson uses a trans-
verse and longitudinal decomposition of the current, related to the Helmholtz theorem to allude
to this.

That decomposition follows from expanding ∇2J/R in two ways using the delta function
−4πδ(x − x′) = ∇21/R representation, as well as directly
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(I.12)

−4πJ(x) =

∫
∇

2 J(x′)
|x − x′|

d3x′

= ∇

∫
∇ ·

J(x′)
|x − x′|

d3x′ + ∇ ·
∫
∇ ∧

J(x′)
|x − x′|

d3x′

= −∇

∫
J(x′) · ∇′

1
|x − x′|

d3x′ + ∇ ·
(
∇ ∧

∫
J(x′)
|x − x′|

d3x′
)

= −∇

∫
∇
′ ·

J(x′)
|x − x′|

d3x′ + ∇
∫
∇′ · J(x′)
|x − x′|

d3x′ − ∇ ×
(
∇ ×

∫
J(x′)
|x − x′|

d3x′
)

The first term can be converted to a surface integral

(I.13)−∇

∫
∇
′ ·

J(x′)
|x − x′|

d3x′ = −∇

∫
dA′ ·

J(x′)
|x − x′|

,

so provided the currents are either localized or |J|/R→ 0 on an infinite sphere, we can make
the identification

J(x) = ∇
1

4π

∫
∇′ · J(x′)
|x − x′|

d3x′ −∇ ×∇ ×
1

4π

∫
J(x′)
|x − x′|

d3x′ ≡ Jl + Jt, (I.14)

where ∇× Jl = 0 (irrotational, or longitudinal), whereas ∇ · Jt = 0 (solenoidal or transverse).
The irrotational property is clear from inspection, and the transverse property can be verified
readily

(I.15)

∇ · (∇ × (∇ × X)) = −∇ · (∇ · (∇ ∧ X))
= −∇ ·

(
∇

2X − ∇ (∇ · X)
)

= −∇ ·
(
∇

2X
)

+ ∇2 (∇ · X)
= 0.

Since

(I.16)Φ(x, t) =
1

4πε

∫
ρv(x′, t)
|x − x′|

d3x′,

we have

(I.17)

∇
∂Φ
∂t

=
1

4πε
∇

∫
∂tρv(x′, t)
|x − x′|

d3x′

=
1

4πε
∇

∫
−∇′ · J
|x − x′|

d3x′

=
Jl

ε
.
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This means that the Ampere-Maxwell equation takes the form

∇
2A − εµ

∂2A
∂t2 = −µJ + µJl = −µJt. (I.18)

This justifies the “transverse” in the label transverse gauge.



J
M AT H E M AT I C A N OT E B O O K S

These Mathematica notebooks, some just trivial ones used to generate figures, others more
elaborate, and perhaps some even polished, can be found in

https://github.com/peeterjoot/mathematica/tree/master/.
The free Wolfram CDF player, is capable of read-only viewing these notebooks to some

extent.

• Dec 31, 1969 ece1228-emt/BrewstersAngle.nb

Total internal reflection critical angle.

• Oct 21, 2016 ece1228-emt/ps5/ps5.nb

Plots of index of refraction and relative permittivity for passive and active media.

• Nov 4, 2016 ece1228-emt/ps6alphaPlusBetaSquareFactorization.nb

A verification of the hand calculated result.

• Nov 5, 2016 ece1228-emt/quadropoleVerificationJacksonChapter4.nb

Quadropole expansion comparison attempt.

• Dec 4, 2016 ece1228-emt/ps9/ps9p1Eigenvalues.nb

ps9, p1, Slab transfer matrix eigenvalues.

• Dec 4, 2016 ece1228-emt/ps9/ps9p2Plots.nb

Problem set 9, problem 2. Plots of transmission magnitude and phase for a one dimen-
sional photonic crystal. Plots assume: µ1 = µ2 = 1, normal incidence, and use the Fresnel
reflection coefficient ρi j for the TE mode polarization.
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anisotropic, 7

Biot-Savart, 37
bivector, 133
bound charge, 22
boundary, 5
boundary conditions, 31

electric field, 39
tangential magnetic field, 36

breakdown voltage, 6

capacitor, 6, 22
conducting sheet, 13
conductivity, 31
conductor

charge dissipation, 39
constitutive relations, 6
constitutive relationships, 31
continuity equation, 39
curl, 107, 139

cylindrical coordinates, 133
spherical coordinates, 139

curl of curl, 107
current loop, 37

De-Broglie relation, 9
delta function

Laplacian, 107, 120
dielectric, 22

boundary conditions, 39
dipole

electric, 21, 26, 27
elemental, 24
potential, 28

dipole moment density, 26

divergence, 139
cylindrical coordinates, 133
spherical coordinates, 139

divergence free, 11
Divergence Theorem, 5
doppler shift, 47
duality theorem, 48

electric energy density, 42
electric field

direction vector, 19
spherical shell, 10

electrostatic energy, 117
electrostatics, 19
energy

torque, 30

Faraday’s law, 5
field lines

electric, 11
force, 123

Gauss’s law
matter, 25

Geometric Algebra, 109, 133, 139
grade one selection, 109
gradient, 20, 139

cylindrical coordinates, 16, 133
radial functions, 107
spherical coordinates, 139

Green’s function
Laplacian representation, 39

Helmholtz’s theorem, 9, 14
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index of refraction, 8, 47
irrotational, 12

Laplacian, 139
cylindrical coordinates, 133
decomposition, 107
Green’s function, 39
spherical coordinates, 139

LC circuit, 43
line charge, 15
Lorentz force, 123

macroscopic, 6
magnetic energy density, 41
magnetic flux, 6
magnetic moment, 29
magnetic polarization, 29
magnetic surface charge density, 32
magnetization, 7, 19, 29
magnetostatics, 123
Mathematica, 157
Maxwell’s equations

point charge, 16
time domain, 3

moment
magnetic, 29

non-solenoidal, 11
normal component, 109
normal field component, 32
number density, 23

Ohm’s law, 31

permeability, 6
permittivity

relative, 8
vacuum, 8

phasor, 48
photon

angular momentum, 8

momentum, 8
point charge, 16, 19
polarization, 7, 19, 22
potential

electric, 20
electric dipole, 26, 28

potential energy, 117
Poynting theorem, 41
Poynting vector, 41

frequency domain, 46
projection, 109
pseudoscalar, 139

rejection, 109

scalar, 133
self energy, 117
solenoidal, 11, 12
spherical coordinates, 139

rotation matrix, 22
Stokes’ Theorem, 5
stored electric energy, 42
stored magnetic energy, 42
superposition, 19
supplied power density, 41
surface charge density, 20

tangential component, 109
tangential field component, 31
time harmonics, 43
torque, 30, 123
triple cross product, 109

unit
ampere, 4
candela, 4
Coulomb, 4
Kelvin, 4
mole, 4

units, 3
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waveguide, 14
wedge product, 139
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