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Explicit expansion of the Dirac u,v matrices

We found that the solution of the u(p), v(p) matrices were

(1.1)
u(p) =

[√
p · σζ√
p · σζ

]
v(p) =

[ √
p · ση

−
√

p · ση

]
,

where

(1.2)
p · σ = p0σ0 − σ · p
p · σ = p0σ0 + σ · p.

It was pointed out that these square roots can be conceptualized as (in the right basis) as the diagonal
matrices of the eigenvalue square roots.

It was also pointed out that we don’t tend to need the explicit form of these square roots.We saw that
to be the case in all our calculations, where these always showed up in the end in quadratic combinations
like

√
(p · σ)2,

√
(p · σ)(p · σ), · · ·, which nicely reduced each time without requiring the matrix roots.

I encountered a case where it would have been nice to have the explicit representation. In particular,
I wanted to use Mathematica to symbolically expand Ψiγµ∂µΨ in terms of as

p, br
p, · · · representation,

to verify that the massless Dirac Lagrangian are in fact the energy and momentum operators (and to
compare to the explicit form of the momentum operator found in eq. 3.105 [1]). For that mechanical
task, I needed explicit representations of all the us(p), vr(p) matrices to plug in.

It happens that 2× 2 matrices can be square-rooted symbolically (FIXME: link to squarerootOfFour-
SigmaDotP.nb notebook). In particular, the matrices p · σ, p · σ have nice simple eigenvalues ±‖p‖ + ωp.
The corresponding unnormalized eigenvectors for p · σ are

(1.3)
e1 =

[
−px + ipy
pz + ‖p‖

]
e1 =

[
−px + ipy
pz − ‖p‖

]
.
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This means that we can diagonalize p · σ as

(1.4)p · σ = U
[

ωp + ‖p‖ 0
0 ωp − ‖p‖

]
U†,

where U is the matrix of the normalized eigenvectors

(1.5)
U =

[
e′1 e′2

]
=

1√
2p2 + 2pz ‖p‖

[
−px + ipy −px + ipy
pz + ‖p‖ pz − ‖p‖

]
.

Letting Mathematica churn through the matrix products eq. (1.4) verifies the diagonalization, and for
the roots, we find

(1.6)
√

p · σ =
1√

ωp − ‖p‖ +
√

ωp + ‖p‖

ωp − pz +
√

ω2
p − p2 −px + ipy

−px − ipy ωp + pz +
√

ω2
p − p2

 .

Now we can plug in ζ1T = (1, 0), ζ2T = (0, 1), η1T = (1, 0), η2T = (0, 1) to find the explicit form of our u’s
and v’s

(1.7)

u1(p) =
1√

ωp − ‖p‖ +
√

ωp + ‖p‖


ωp − pz +

√
ω2

p − p2

−px − ipy

ωp + pz +
√

ω2
p − p2

px + ipy



u2(p) =
1√

ωp − ‖p‖ +
√

ωp + ‖p‖


−px + ipy

ωp + pz +
√

ω2
p − p2

px − ipy

ωp − pz +
√

ω2
p − p2



v1(p) =
1√

ωp − ‖p‖ +
√

ωp + ‖p‖


ωp − pz +

√
ω2

p − p2

−px − ipy

−ωp − pz +
√

ω2
p − p2

−px − ipy



v2(p) =
1√

ωp − ‖p‖ +
√

ωp + ‖p‖


−px + ipy

ωp + pz +
√

ω2
p − p2

−px + ipy

−ωp + pz +
√

ω2
p − p2

 .
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This is now a convenient form to try the next symbolic manipulation task. If nothing else this takes some
of the mystery out of the original compact notation, since we see that the u, v’s are just 4 element column
vectors, and we know their explicit should we want them.

Also note that in class we made a note that we should take the positive roots of the eigenvalue diagonal
matrix. It doesn’t look like that is really required. We need not even use the same sign for each root.
Squaring the resulting matrix root in the end will recover the original p · σ matrix.
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