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PHY2403H Quantum Field Theory. Lecture 14: Time evolution,
Hamiltonian perturbation, ground state. Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. ~ These are notes for the UofT
course PHY2403H, Quantum Field Theory, taught by Prof. Erich Poppitz, fall 2018.

1.1 Review

Given a field ¢(to, x), satisfying the commutation relations
[72(to, x), ¢(to, y)| = —id(x —y) (1.1)
we introduced an interaction picture field given by
Pi(t, x) = e (1, x)e~Holl =) (1.2)

related to the Heisenberg picture representation by

(PH(t/ x) = eiH(t—to)(P(tO’ x)e—iH(t—tO) (1.3)
= U'(t, to)pi(t, x)U(t, o),

where U(t, ty) is the time evolution operator.
U(t, to) = et to)gmiH(t=t0) (1.4)

We argued that
.0
i= Ut to) = Hiine(OU(E, fo) (1.5)

We found the glorious expression

t
U(t, to) = Texp <—i /t Hl,im(t/)dt’>
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dtidty - - - dt, T (Hyine(t1) Hiint(t2) - - - Hiint(tn))
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However, what we are really after is
(Q T(p(x1) - - - p(xn)) [Q) (1.7)

Such a product has many labels and names, and we’ll describe it as “vacuum expectation values of
time-ordered products of arbitrary #s of local Heisenberg operators”.

1.2 Perturbation

Following §4.2, [1].

H = exact Hamiltonian = Hy + Hjnt (18)
Hy = free Hamiltonian. ’

We know all about Hy and assume that it has a lowest (ground state) |0), the “vacuum” state of H.
H has eigenstates, in particular H is assumed to have a unique ground state |Q2) satisfying

H[Q) = Q) E, (1.9)

and has states |n), representing excited (non-vacuum states with energies > Ej). These states are
assumed to be a complete basis

1=10)(Q] + Y |n) <n|+/dn|n> (n]. (1.10)

The latter terms may be written with a superimposed sum-integral notation as

Z+/dn = Z: (1.11)

n

so the identity operator takes the more compact form

1=0)(Q] +I|n> (. (1.12)
n
For some time T we have

e=iHT 0y = =T [ Q) (Q0) + Xf 1) (n[0) | . (1.13)

We now wish to argue that the I term can be ignored.

n



Argument 1:  This is something of a fast one, but one can consider a formal transformation T —
T(1 — ie), where € — 0%, and consider very large T. This gives

lim M09y = dim om0 (m (©[0) + Y ) <no>>
n

— T_)gl?_)(ﬁ efiEOTfEOeT ‘Q> <Q|O> + Ieﬂ'EnT*eE"T ’Tl> <Tl|0>
n

— . lim . efiEngEoeT (Q> <Q|0> + iefi(Enon)TfeT(E,ﬁEo) |Tl> <Tl0>)
—00,6— ;

(1.14)

The limits are evaluated by first taking T to infinity, then only after that take e — 0*. Doing this,
the sum is dominated by the ground state contribution, since each excited state also has a e~¢7(En—Fo)
suppression factor (in addition to the leading suppression factor).

Argument 2: ~ With the hand waving required for the argument above, it’s worth pointing other (less
formal) ways to arrive at the same result. We can write

d3p
Lin ol > X [ .5 k) o4 (115

where k is some unknown quantity that we are summing over. If we have

H|p, k) = Ep lp, k), (1.16)

then

S HTIEDS [ Er ok (o, (117)

If we take matrix elements

(Al ) (n] B) Z/(2 s (Alp,K) e~ (p,K|B)
K f e

If we assume that f(p) is a well behaved smooth function, we have “infinite” frequency oscillation
within the envelope provided by the amplitude of that function, as depicted in fig. 1.1. The Riemann-
Lebesgue lemma [?] describes such integrals, the result of which is that such an integral goes to zero.
This is a different sort of hand waving argument, but either way, we can argue that only the ground
state contributes to the sum eq. (1.13) above.

(1.18)
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Figure 1.1: High frequency oscillations within envelope of well behaved function.

Ground state of the perturbed Hamiltonian. ~ With the excited states ignored, we are left with
e~ [0) = e =BT |2) (Q2[0)
inthe T — oo(1 — i€) limit. We can now write the ground state as
¢FoT—iHT |0)
(©2]0)

e—iHT ’0>
e—1EoT <Q|0>

) =

T—0o(1—i€)

Tsoo(1—ic)
Shifting the very large T — T + ty shouldn’t change things, so
efiH(T+t0) |0>

Q) = e—iEo(T+1) (()]0)

T—00(1—ie)

(1.19)

(1.20)

(1.21)

A bit of manipulation shows that the operator in the numerator has the structure of a time evolu-

tion operator.

Claim: (DIY):  Equation (1.4), eq. (1.6) may be generalized to
u(t, t/) — eiHo(t—to)e—iH(t—t’)e—iHO(t,—t()) = TeXp (—l/t HI int(tll)dt//> )
v

Observe that we recover eq. (1.6) when ¢’ = t. Using eq. (1.22) we find

u(tO/ _T) ’0> — eiHo(to—to)e—iH(t0+T)e—iH0(—T—to) |0>
— e*iH(t0+T)efiH0(7T7to) |0>

— e—iH(t0+T) |0> ,

(1.22)

(1.23)



where we use the fact that e"07 |0) = (1+iHyT +---)|0) = 1]0), since Hp |0) = 0.
We are left with

_ u(tO/ _T) ’0>
Q) = —E-cD) (Q[0)”

(1.24)

We are close to where we want to be. Wednesday we finish off, and then start scattering and
Feynman diagrams.
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