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PHY2403H Quantum Field Theory. Lecture 21, Part II: Dirac Hamiltonian,
Hamiltonian eigenvalues, general solution, creation and annihilation
operators, Dirac Sea, anti-electrons. Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. These are notes for the UofT
course PHY2403H, Quantum Field Theory, taught by Prof. Erich Poppitz, fall 2018.

1.1 Lagrangian.

Theorem 1.1: Dirac Hamiltonian.

The Dirac Hamiltonian is
H =

∫
d3xΨ†

(
−iγ0γj∂jΨ + mγ0

)
Ψ.

To prove theorem 1.1, we start with the spacetime expansion of the Dirac Lagrangian density

(1.1)
LDirac = Ψiγ0∂0Ψ + iΨγj∂jΨ − mΨΨ

= Ψ†γ0iγ0∂0Ψ + iΨγ0γj∂jΨ − mΨ†γ0Ψ

= Ψ†iΨ̇ + iΨ†γ0γj∂jΨ − mΨ†γ0Ψ.

We see that the momentum conjugate to Ψ is

(1.2)πψ =
∂L
∂Ψ̇

= iΨ†.
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Computing the Hamiltonian density in the usual way, we have

(1.3)

HDirac = πΨΨ̇ − L
= iΨ†Ψ̇ −

(
Ψ†iΨ̇ + iΨ†γ0γj∂jΨ − mΨ†γ0Ψ

)
= −iΨ†γ0γj∂jΨ + mΨ†γ0Ψ.

Integrating over a 3-volume provides the Dirac Hamiltonian of theorem 1.1.
Now we want to examine the action of −iγ0γj∂j + mγ0 = γ0 (−iγj∂j + m

)
on the plane wave solutions

we have found.

Theorem 1.2: Hamiltonian action on Dirac plane wave solutions.

For Ψu = u(p)e−ip·x, and Ψv = v(p)eip·x, we have

−γ0
(

iγj∂j −m
)

Ψu = p0Ψu

−γ0
(

iγj∂j −m
)

Ψv = −p0Ψv.

Theorem 1.2, which shows that Ψu, Ψv are eigenvectors of the operator γ0 (−iγj∂j + m
)

with eigenvalues
±ωp. These eigenvalue equations follow from the Dirac equation for Ψu, Ψv. These are

(1.4)

(
iγµ∂µ − m

)
ue−ip·x =

(
iγj∂j + iγ0∂0 − m

)
ue−ip·x

=
(

iγj∂j + i(−i)γ0 p0 − m
)

ue−ip·x

and

(1.5)

(
iγµ∂µ − m

)
veip·x =

(
iγj∂j + iγ0∂0 − m

)
veip·x

=
(

iγj∂j + i(i)γ0 p0 − m
)

veip·x.

Rearranging gives

(1.6)

(
iγj∂j − m

)
ue−ip·x = −γ0 p0ue−ip·x(

iγj∂j − m
)

veip·x = +γ0 p0ue−ip·x,

and theorem 1.2 follows immediately.
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1.2 General solution.

As with the KG equation, let’s introduce a generic solution formed from linear combinations of our
specific us(p) = us

p, vs(p) = vs
p solutions

(1.7)Ψ(x, t) =
2

∑
s=1

∫ d3 p
(2π)3

√
2ωp

(
e−ip·xus

pas
p + eip·xvs

pbs
p

)
.

Theorem 1.3: Dirac Hamiltonian in terms of creation and annihilation operators.

Substitution of the superposition eq. (1.7) into the Dirac Hamiltonian of theorem 1.1 results in

HDirac =
2

∑
r=1

∫ d3 p
(2π)3 ωp

(
ar†

p ar
p − br†

−pbr
−p

)
.

Deferring interpretation slightly, we first prove theorem 1.3, making the somewhat lazy guess that all
the time dependent terms will be wiped out. This assumption allows us to use the zero time fields of
our superposition solution

(1.8a)Ψ(x, 0) =
2

∑
s=1

∫ d3 p
(2π)3

√
2ωp

eip·x
(

us
pas

p + vs
−pbs

−p

)

(1.8b)Ψ†(x, 0) =
2

∑
r=1

∫ d3q
(2π)3

√
2ωq

e−iq·x
(

ur†
q ar†

q + vr†
−qbr†

−q

)
.

Making use of the eigenvalue equations theorem 1.2 the Hamiltonian is reduced to

(1.9)

HDirac =
2

∑
r,s=1

∫ d3xd3 pd3q
(2π)62√ωpωq

ei(p−q)·x
(

ur†
q ar†

q + vr†
−qbr†

−q

)
ωp

(
us

pas
p − vs

−pbs
−p

)
=

2

∑
r,s=1

∫ d3 p
(2π)32

��
ωp

(
ur†

p ar†
p + vr†

−pbr†
−p

)
��
ωp

(
us

pas
p − vs

−pbs
−p

)
=

1
2

2

∑
r,s=1

∫ d3 p
(2π)3

(
ur†

p us
par†

p as
p − ur†

p vs
−par†

p bs
−p + vr†

−pus
pbr†
−pas

p − vr†
−pvs

−pbr†
−pbs

−p

)
,

where care was taken not to commute any a, b’s. Recall that

ur†
p us

p = vr†
p vs

p = 2ωpδrs (1.10a)
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ur†
p vs
−p = vr†

−pus
p = 0. (1.10b)

Equation (1.10b) kills off our cross terms, and eq. (1.10a) wipes out one of the summation indexes

(1.11)
HDirac =

1
2

2

∑
r,s=1

∫ d3 p
(2π)3

(
ur†

p us
par†

p as
p −����ur†

p vs
−par†

p bs
−p +

��
��vr†

−pus
pbr†
−pas

p − vr†
−pvs

−pbr†
−pbs

−p

)
=

2

∑
r=1

∫ d3 p
(2π)3 ωp

(
ar†

p ar
p − br†

−pbr
−p

)
.

We see above how the mixed terms were killed off nicely by eq. (1.10b). That also justifies the use of the
zero-time fields in this derivation, which can also be seen explicitly without use of the zero-time fields
exercise 1.1.

Interpretation. With a minus sign in the Hamiltonian, there is no bound to the energy from below! This
makes it troublesome to interpret the ap’s and bp’s as the familiar raising and lowering operators that we
know.

We can save the day, making the “Dirac sea” argument, roughly speaking that we can consider a set of
completely full negative energy states, where creation of a particle makes a hole in one of those states1,
as sketched roughly in fig. 1.1. Such an argument does not work for Bosons (photons, ...) since an

Figure 1.1: Dirac Sea.

1There was a long discussion of this topic in class that I was not able to capture in my notes.
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arbitrary number of such particles can be stuffed into any given state. It will turn out that our operators
are Fermions, which gets us out of this trouble.

We can also get out of this hole algebraically. For X = a, b, let

(1.12)
Xs†

p = X̃s
p

Xs
p = X̃s†

p .

It turns out that some properties of our creation and annihilation operators are

(1.13)

(as
p)2 = 0

(as†
p )2 = 0

(bs
p)2 = 0

(bs†
p )2 = 0,

and

(1.14)

{
as

p, ar†
q

}
= δsrδ(3)(p − q){

bs
p, br†

q

}
= δsrδ(3)(p − q),

where all other anticommutators are zero

(1.15)

{ar, bs} =
{

ar, bs†
}

=
{

ar†, bs
}

=
{

ar†, bs†
}

= 0.

Such a substitution gives

(1.16)

HDirac =
2

∑
s=1

∫ d3 p
(2π)3 ωp

(
ãs

pas
p − b̃s

pbs
p

)
=

2

∑
s=1

∫ d3 p
(2π)3 ωp

(
ãs

pas
p + bs

pb̃s
p + δssδ(3)(p − p)

)
=

2

∑
s=1

∫ d3 p
(2π)3

(
ωp

(
ãs

pas
p + bs

pb̃s
p

)
− 4V3

ωp

2

)
.

We’ll end up dropping the vacuum energy term. We’ll end up labelling the a’s as the operators asso-
ciated with electrons, and the b’s with anti-electrons.
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1.3 Problems.

Exercise 1.1 Derive the Dirac Hamiltonian without using the zero-time field substitution.

Answer for Exercise 1.1
With time left in the mix the fields are

(1.17)

Ψ(x) =
2

∑
s=1

∫ d3 p
(2π)3

√
2ωp

(
e−ip·xus

pas
p + eip·xvs

pbs
p

)
Ψ†(x) =

2

∑
r=1

∫ d3q
(2π)3

√
2ωq

(
eiq·xur†

q ar†
q + e−iq·xvr†

q br†
q

)
,

and the Hamiltonian is

HDirac =
2

∑
r,s=1

∫ d3xd3 pd3q
(2π)62√ωpωq

(
eiq·xur†

q ar†
q + e−iq·xvr†

q br†
q

)
ωp

(
e−ip·xus

pas
p − eip·xvs

pbs
p

)
=

2

∑
r,s=1

∫ d3xd3 pd3q
(2π)62√ωpωq

(
eiωqt−iq·xur†

q ar†
q + e−iωqt+iq·xvr†

q br†
q

)
ωp

(
e−iωpt+ip·xus

pas
p − eiωpt−ip·xvs

pbs
p

)
=

2

∑
r,s=1

∫ d3xd3 pd3q
(2π)62√ωpωq

(
eiωqt−iq·xur†

q ar†
q + e−iωqt−iq·xvr†

−qbr†
−q

)
ωp

(
e−iωpt+ip·xus

pas
p

− eiωpt+ip·xvs
−pbs

−p

)
=

2

∑
r,s=1

∫ d3 p
(2π)32

(
eiωqtur†

q ar†
q + e−iωqtvr†

−qbr†
−q

) (
e−iωptus

pas
p − eiωptvs

−pbs
−p

)
=

2

∑
r,s=1

∫ d3 p
(2π)32

(
ur†

q us
par†

q as
p − vr†

−qvs
−pbr†

−qbs
−p

)
,

(1.18)

where a δ(3)(p− q) was factored out and evaluated, and the remaining vr†
−pus, ur†vs

−p terms were killed
off. A final use of eq. (1.10a) completes the proof.
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