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PHY2403H Quantum Field Theory. Lecture 8: 1st Noether theorem,
spacetime translation current, energy momentum tensor, dilatation
current. Taught by Prof. Erich Poppitz

DISCLAIMER: Very rough notes from class, with some additional side notes. These are notes for the UofT
course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

1.1 1st Noether theorem.

Recall that, given a transformation
(1.1)φ(x)→ φ(x) + δφ(x),

such that the transformation of the Lagrangian is only changed by a total derivative

(1.2)L(φ, ∂µφ)→ L(φ, ∂µφ) + ∂µ Jµ
ε ,

then there is a conserved current
(1.3)jµ =

∂L
∂(∂µφ)

δεφ − Jµ
ε .

Here ε is an x-independent quantity (i.e. a global symmetry). This is in contrast to “gauge symme-
tries”, which can be more accurately be categorized as a redundancy in the description.

As an example, for L = (∂µφ∂µφ−m2φ2)/2, let

(1.4)φ(x)→ φ(x)− aµ∂µφ

(1.5)L(φ, ∂µφ)→ L(φ, ∂µφ)− aµ∂µL
= L(φ, ∂µφ) + ∂µ (−δµ

νaνL)

Here Jµ
ε = Jµ

ε

∣∣
ε=aν , and the current is

(1.6)Jµ = (∂µφ)(−aν∂νφ) + δµ
νaνL.

In particular, we have one such current for each ν, and we write

(1.7)Tµ
ν = −(∂µφ)(∂νφ) + δµ

νL.

By Noether’s theorem, we must have
(1.8)∂µTµ

ν = 0, ∀ν.
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Check:

(1.9)

∂µTµ
ν = −(∂µ∂µφ)(∂νφ)− (∂µφ)(∂µ∂νφ) + δµ

ν∂µ

(
1
2

∂αφ∂αφ − m2

2
φ2
)

= −(∂µ∂µφ)(∂νφ)− (∂µφ)(∂µ∂νφ) +
1
2

(∂ν∂µφ)(∂µφ) +
1
2

(∂µφ)(∂ν∂µφ)− m2(∂νφ)φ

= −
(
∂µ∂µφ + m2φ

)
(∂νφ)− (∂µφ)(∂µ∂νφ) +

1
2

(∂ν∂µφ)(∂µφ) +
1
2

(∂µφ)(∂ν∂µφ)

= 0.

Example: our potential Lagrangian

(1.10)L =
1
2

∂µφ∂νφ − m2

2
φ2 − λ

4
φ4

Written with upper indexes

(1.11)
Tµν = −(∂µφ)(∂νφ) + gµνL

= −(∂µφ)(∂νφ) + gµν

(
1
2

∂αφ∂αφ − m2

2
φ2 − λ

4
φ4
)

There are 4 conserved currents Jµ(ν) = Tµν. Observe that this is symmetric (Tµν = Tνµ).
We have four associated charges

(1.12)Qν =
∫

d3xT0ν.

We call
(1.13)Q0 =

∫
d3xT00,

the energy density, and call
(1.14)Pi =

∫
d3xT0i,

(i = 1,2,3) the momentum density.
writing this out explicitly the energy density is

(1.15)
T00 = −φ̇2 +

1
2

(
φ̇2 − (∇φ)2 − m2

2
φ2 − λ

4
φ4
)

= −
(

1
2

φ̇2 +
1
2

(∇φ)2 +
m2

2
φ2 +

λ

4
φ4
)

,

and
(1.16)T0i = ∂0φ∂iφ,

(1.17)Pi = −
∫

d3x∂0φ∂iφ
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Since the energy density is negative definite (due to an arbitrary choice of translation sign), let’s
redefine Tµν to have a positive sign

(1.18)T00 ≡ 1
2

φ̇2 +
1
2

(∇φ)2 +
m2

2
φ2 +

λ

4
φ4,

and
(1.19)Pi =

∫
d3x∂0φ∂iφ

As an operator we have

(1.20)
Q̂ =

∫
d3xT̂00

=
∫

d3x
(

1
2

π̂2 +
1
2

(∇φ̂)2 +
m2

2
φ̂2 +

λ

4
φ̂4
)

.

(1.21)P̂i =
∫

d3xπ̂∂iφ

We showed that

(1.22)
dÔ
dt

= i
[
Ĥ, Ô

]
This implied that φ̂, π̂ obey the classical EOMs

dφ̂

dt
= i
[
Ĥ, φ̂

]
=

dπ̂

dt
(1.23)

dπ̂

dt
= i
[
Ĥ, π̂

]
= ... (1.24)

In terms of creation and annihilation operators (for the λ = 0 free field), up to a constant

(1.25)
Ĥ =

∫
d3xT̂00

=
∫ d3 p

(2π)3 ωp â†
p âp

Can show that:

(1.26)
P̂i =

∫
d3xπ̂∂iφ̂

= · · ·

=
∫ d3 p

(2π)3 pi â†
p âp

Now we see the energy and momentum as conserved quantities associated with spacetime transla-
tion.
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1.2 Unitary operators

In QM we say that p̂ “generates translations”.
With p̂ ≡ −ih̄∇ that translation is

Û = eia·p̂ = ea·∇ (1.27)

In particular

(1.28)〈x| Û |ψ〉 = ea·p̂ψ(x)
= ψ(x + a).

In one dimension
(1.29)Ûx̂Û† = ea· p̂ψ(x)e−a· p̂

= x̂ + a1̂.

This uses the Baker-Campbell-Hausdorff formula.

Theorem 1.1: Baker-Campbell-Hausdorff

(1.30)eB Ae−B =
∞

∑
n=0

1
n!

[B · · ·, [B, A]] ,

where the n-th commutator is denoted above

• n = 1 : [B, A]

• n = 2 : [B, [B, A]]

• n = 3 : [B, [B, [B, A]]]

Proof:

(1.31)
f (t) = etB Ae−tB

= f (0) + t f ′(0) +
t2

2
f ′′(0) + · · · tn

n!
f (n)(0)

(1.32)f (0) = A

(1.33)f ′(t) = etBBAe−tB + etB A(−B)e−tB

= etB [B, A] e−tB

(1.34)f ′′(t) = etBB [B, A] e−tB + etB [B, A] (−B)e−tB

= etB [B, [B, A]] e−tB.
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From
(1.35)f (1) = f (0) + f ′(0) +

1
2

f ′′(0) + · · · 1
n!

f (n)(0)

we have
(1.36)eB Ae−B = A + [B, A] +

1
2

[B, [B, A]] + · · ·

Example:

(1.37)ea∂x xe−a∂x = x + a [∂x, x] + · · ·
= x + a.

Application:
(1.38)eiHermitian = unitary

(1.39)eiHermitian × e−iHermitian = 1

So
(1.40)Û(a) = eiaj p̂j

is a unitary operator representing finite translations in a Hilbert space.

(1.41)
Û(a)φ̂(x)Û†(a) = eiaj p̂j

φ̂(x)e−iak p̂k

= φ̂(x) + iaj
[

P̂j, φ̂(x)
]

+
−aj1 aj2

2

[
P̂j1 ,

[
P̂j2 , φ̂(x)

]]

(1.42)

[
P̂j, φ̂(x)

]
=
∫

d3y
[
π̂(y)∂jφ̂(y), φ̂(x)

]
=
∫

d3y
[
π̂(y), φ̂(x

]
∂jφ̂(y)

=
∫

d3y(−i)δ3(y − x)∂jφ̂(y)

= −i∂jφ̂(x).

(1.43)
Û(a)φ̂(x)Û†(a) = φ̂(x) + iaj(−i)∂jφ̂(x) + · · ·

= φ̂(x) + aj∂jφ̂(x) + · · ·
= φ̂(x + a)

1.3 Continuous symmetries

For all infinitesimal transformations, continuous symmetries lead to conserved charges Q. In QFT
we map these charges to Hermitian operators Q → Q̂. We say that these charges are “generators of
the corresponding symmetry” through unitary operators

(1.44)Û = eiparameterQ̂.

These represent the action of the symmetry in the Hilbert space.
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Example: spatial translation
(1.45)Û(a) = eia·P̂

Example: time translation
(1.46)Û(t) = eitĤ .

1.4 Classical scalar theory

For d > 2 let’s look at

(1.47)S =
∫

ddx
(

1
2

∂µφ∂µφ − m2

2
φ2 − λφd−2

)
Take m2, λ → 0, the free massless scalar field. We have a shift symmetry in this case since φ(x) →
φ(x) + constant. The current is just

(1.48)
jµ =

∂φ

∂(∂µφ)
δφ −��J

µ

= constant× ∂µφ

= ∂µφ,

where the constant factor has been set to one. This current is clearly conserved since ∂µ Jµ = ∂µ∂µφ = 0
(the equation of motion).

These are called “Goldstein Bosons”.

With m = λ = 0, d = 4 we have NOTE: We did this in class differently with d 6= 4, m, λ 6= 0, and
then switched to m = λ = 0, d = 4, which was confusing. I’ve reworked my notes to d = 4 like the
supplemental handout that did the same.

(1.49)S =
∫

d4x
(

1
2

∂µφ∂µφ

)
Here we have a scale or dilatation invariance

x → x′ = eλx, (1.50)

φ(x)→ φ′(x′) = e−λφ, (1.51)

d4x → d4x′ = e4λd4x, (1.52)

The partials transform as

(1.53)

∂µ → ∂

∂x′µ

=
∂xµ

∂x′µ

∂

∂xµ

= e−λ ∂

∂xµ
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so the partial of the field transforms as

∂µφ(x)→ ∂φ′(x′)
∂x′µ

= e−2λ∂µφ(x), (1.54)

and finally
(1.55)(∂µφ)2 → e−4λ

(
∂µφ(x)

)2 .

With a −4λ power in the transformed quadratic term, and 4λ in the volume element, we see that
the action is invariant. To find Noether current, we need to vary the field and it’s derivatives

(1.56)

δλφ = φ′(x)− φ(x)
= φ′(e−λx′)− φ(x)
≈ φ′(x′ − λx′)− φ(x)
≈ φ′(x′)− λx′α∂αφ′(x′)− φ(x)
≈ (1− λ)φ(x)− λx′α∂αφ′(x′)− φ(x)
= −λ(1 + xα∂α)φ,

where the last step assumes that x′ → x, φ′ → φ, effectively weeding out any terms that are quadratic
or higher in λ.

Now we need the variation of the derivatives of φ

(1.57)δ∂µφ(x) = ∂′µφ′(x)− ∂µφ(x),

By eq. (1.54)

(1.58)

∂′µφ′(x′) = e−2λ∂µφ(x)

= e−2λ∂µφ(e−λx′)

≈ e−2λ∂µ

(
φ(x′)− λx′α∂αφ(x′)

)
≈ (1− 2λ) ∂µ

(
φ(x′)− λx′α∂αφ(x′)

)
,

so

(1.59)δ∂µφ = −λxα∂α∂µφ(x)− 2λ∂µφ(x) + O(λ2)
= −λ (xα∂α + 2) ∂µφ(x).

(1.60)δL = (∂µφ)δ(∂µφ)
= −λ

(
2∂µφ + xα∂α∂µφ

)
∂µφ,

or

(1.61)

δL
−λ

= 4L + xα
(
∂α∂µφ

)
∂µφ

= 4L + xα∂α (L)
= ��4L + ∂α (xαL)−����L∂αxα.
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The variation in the Lagrangian density is thus

δL = ∂µ Jµ
λ = ∂µ (−λxµL) , (1.62)

and the current is
Jµ
λ = −λxµL. (1.63)

The Noether current is

(1.64)
jµ =

∂L
∂(∂µφ)

δφ − Jµ

= −∂µφ (1 + xν∂ν) φ +
1
2

xµ∂νφ∂νφ,

or after flipping signs

(1.65)
jµ
dil = ∂µφ (1 + xν∂ν) φ − 1

2
xµ∂νφ∂νφ

= xν

(
∂µφ∂νφ − 1

2
δν

µ∂λφ∂λφ

)
+

1
2

∂µ(φ2),

(1.66)jµ
dil = −xνTνµ +

1
2

∂µ(φ2),

The current and Tµν can both be redefined jµ′ = jµ + ∂νCνµ adding an antisymmetric Cµν = −Cνµ

(1.67)jµ
dil conformal = −xνTνµ

conformal

(1.68)∂µ jµ
dil conformal = −Tconformal

µ
µ

consequence: 0 = T00 − T11 − T22 − T33, which is essentially

0 = ρ− 3p = 0. (1.69)

8


