Peeter Joot
 peeterjoot@protonmail.com

Lorentz boosts in GA paravector notation.

1.1 Motivation.

The notation I prefer for relativistic geometric algebra uses Hestenes' space time algebra (STA) [3], where the basis is a four dimensional space $\left\{\gamma_{\mu}\right\}$, subject to Dirac matrix like relations $\gamma_{\mu} \cdot \gamma_{v}=\eta_{\mu v}$.

In this formalism a four vector is just the sum of the products of coordinates and basis vectors, for example, using summation convention

$$
\begin{equation*}
x=x^{\mu} \gamma_{\mu} . \tag{1.1}
\end{equation*}
$$

The invariant for a four-vector in STA is just the square of that vector

$$
\begin{align*}
x^{2} & =\left(x^{\mu} \gamma_{\mu}\right) \cdot\left(x^{v} \gamma_{v}\right) \\
& =\sum_{\mu}\left(x^{\mu}\right)^{2}\left(\gamma_{\mu}\right)^{2} \\
& =\left(x^{0}\right)^{2}-\sum_{k=1}^{3}\left(x^{k}\right)^{2} \tag{1.2}\\
& =(c t)^{2}-\mathbf{x}^{2} .
\end{align*}
$$

Recall that a four-vector is time-like if this squared-length is positive, spacelike if negative, and light-like when zero.

Time-like projections are possible by dotting with the "lab-frame" time like basis vector γ_{0}

$$
\begin{equation*}
c t=x \cdot \gamma_{0}=x^{0}, \tag{1.3}
\end{equation*}
$$

and space-like projections are wedges with the same

$$
\begin{equation*}
\mathbf{x}=x \cdot \gamma_{0}=x^{k} \sigma_{k}, \tag{1.4}
\end{equation*}
$$

where sums over Latin indexes $k \in\{1,2,3\}$ are implied, and where the elements σ_{k}

$$
\begin{equation*}
\sigma_{k}=\gamma_{k} \gamma_{0} . \tag{1.5}
\end{equation*}
$$

which are bivectors in STA, can be viewed as an Euclidean vector basis $\left\{\sigma_{k}\right\}$.
Rotations in STA involve exponentials of space like bivectors $\theta=a_{i j} \gamma_{i} \wedge \gamma_{j}$

$$
\begin{equation*}
x^{\prime}=e^{\theta / 2} x e^{-\theta / 2} \tag{1.6}
\end{equation*}
$$

Boosts, on the other hand, have exactly the same form, but the exponentials are with respect to space-time bivectors arguments, such as $\theta=a \wedge \gamma_{0}$, where a is any four-vector.

Observe that both boosts and rotations necessarily conserve the space-time length of a four vector (or any multivector with a scalar square).

$$
\begin{align*}
\left(x^{\prime}\right)^{2} & =\left(e^{\theta / 2} x e^{-\theta / 2}\right)\left(e^{\theta / 2} x e^{-\theta / 2}\right) \\
& =e^{\theta / 2} x\left(e^{-\theta / 2} e^{\theta / 2}\right) x e^{-\theta / 2} \tag{1.7}\\
& =e^{\theta / 2} x^{2} e^{-\theta / 2} \\
& =x^{2} e^{\theta / 2} e^{-\theta / 2} \\
& =x^{2}
\end{align*}
$$

1.2 Paravectors.

Paravectors, as used by Baylis [1], represent four-vectors using a Euclidean multivector basis $\left\{\mathbf{e}_{\mu}\right\}$, where $\mathbf{e}_{0}=1$. The conversion between STA and paravector notation requires only multiplication with the timelike basis vector for the lab frame γ_{0}

$$
\begin{align*}
X & =x \gamma_{0} \\
& =\left(x^{0} \gamma_{0}+x^{k} \gamma_{k}\right) \gamma_{0} \\
& =x^{0}+x^{k} \gamma_{k} \gamma_{0} \tag{1.8}\\
& =x^{0}+\mathbf{x} \\
& =c t+\mathbf{x}
\end{align*}
$$

We need a different structure for the invariant length in paravector form. That invariant length is

$$
\begin{align*}
x^{2} & =\left((c t+\mathbf{x}) \gamma_{0}\right)\left((c t+\mathbf{x}) \gamma_{0}\right) \\
& =\left((c t+\mathbf{x}) \gamma_{0}\right)\left(\gamma_{0}(c t-\mathbf{x})\right) \tag{1.9}\\
& =(c t+\mathbf{x})(c t-\mathbf{x}) .
\end{align*}
$$

Baylis introduces an involution operator \bar{M} which toggles the sign of any vector or bivector grades of a multivector. For example, if $M=a+\mathbf{a}+I \mathbf{b}+I c$, where $a, c \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ is a multivector with all grades $0,1,2,3$, then the involution of M is

$$
\begin{equation*}
\bar{M}=a-\mathbf{a}-I \mathbf{b}+I c . \tag{1.10}
\end{equation*}
$$

Utilizing this operator, the invariant length for a paravector X is $X \bar{X}$.
Let's consider how boosts and rotations can be expressed in the paravector form. The half angle operator for a boost along the spacelike $\mathbf{v}=v \hat{\mathbf{v}}$ direction has the form

$$
\begin{equation*}
L=e^{-\hat{\mathbf{v}} \phi / 2} \tag{1.11}
\end{equation*}
$$

$$
\begin{align*}
X^{\prime} & =c t^{\prime}+\mathbf{x}^{\prime} \\
& =x^{\prime} \gamma_{0} \\
& =L x L^{+} \\
& =e^{-\hat{\mathbf{v}} \phi / 2} x^{\mu} \gamma_{\mu} e^{\hat{\imath} \phi / 2} \gamma_{0} \tag{1.12}\\
& =e^{-\hat{\mathbf{v}} \phi / 2} x^{\mu} \gamma_{\mu} \gamma_{0} e^{-\hat{\mathbf{v}} \phi / 2} \\
& =e^{-\hat{\mathbf{v}} \phi / 2}\left(x^{0}+\mathbf{x}\right) e^{-\hat{\mathbf{v}} \phi / 2} \\
& =L X L .
\end{align*}
$$

Because the involution operator toggles the sign of vector grades, it is easy to see that the required invariance is maintained

$$
\begin{align*}
X^{\prime} \overline{X^{\prime}} & =L X L \overline{L X L} \\
& =L X L \bar{L} \bar{X} \bar{L} \\
& =L X \bar{X} \bar{L} \tag{1.13}\\
& =X \bar{X} L \bar{L} \\
& =X \bar{X}
\end{align*}
$$

Let's explicitly expand the transformation of eq. (1.12), so we can relate the rapidity angle ϕ to the magnitude of the velocity. This is most easily done by splitting the spacelike component \mathbf{x} of the four vector into its projective and rejective components

$$
\begin{align*}
\mathbf{x} & =\hat{\mathbf{v}} \hat{\mathbf{v}} \mathbf{x} \\
& =\hat{\mathbf{v}}(\hat{\mathbf{v}} \cdot \mathbf{x}+\hat{\mathbf{v}} \wedge \mathbf{x}) \\
& =\hat{\mathbf{v}}(\hat{\mathbf{v}} \cdot \mathbf{x})+\hat{\mathbf{v}}(\hat{\mathbf{v}} \wedge \mathbf{x}) \tag{1.14}\\
& =\mathbf{x}_{\|}+\mathbf{x}_{\perp}
\end{align*}
$$

The exponential

$$
\begin{equation*}
e^{-\hat{\mathbf{v}} \phi / 2}=\cosh (\phi / 2)-\hat{\mathbf{v}} \sinh (\phi / 2) \tag{1.15}
\end{equation*}
$$

commutes with any scalar grades and with $\mathbf{x}_{\|}$, but anticommutes with \mathbf{x}_{\perp}, so

$$
\begin{align*}
X^{\prime} & =\left(c t+\mathbf{x}_{\|}\right) e^{-\hat{\mathbf{v}} \phi / 2} e^{-\hat{\mathbf{v}} \phi / 2}+\mathbf{x}_{\perp} e^{\hat{\mathbf{v}} \phi / 2} e^{-\hat{\mathbf{v}} \phi / 2} \\
& =\left(c t+\mathbf{x}_{\|}\right) e^{-\hat{\mathbf{v}} \phi}+\mathbf{x}_{\perp} \\
& =(c t+\hat{\mathbf{v}}(\hat{\mathbf{v}} \cdot \mathbf{x}))(\cosh \phi-\hat{\mathbf{v}} \sinh \phi)+\mathbf{x}_{\perp} \tag{1.16}\\
& =\mathbf{x}_{\perp}+(c t \cosh \phi-(\hat{\mathbf{v}} \cdot \mathbf{x}) \sinh \phi)+\hat{\mathbf{v}}((\hat{\mathbf{v}} \cdot \mathbf{x}) \cosh \phi-c t \sinh \phi) \\
& =\mathbf{x}_{\perp}+\cosh \phi(c t-(\hat{\mathbf{v}} \cdot \mathbf{x}) \tanh \phi)+\hat{\mathbf{v}} \cosh \phi(\hat{\mathbf{v}} \cdot \mathbf{x}-c t \tanh \phi) .
\end{align*}
$$

Employing the argument from [4], we want ϕ defined so that this has structure of a Galilean transformation in the limit where $\phi \rightarrow 0$. This means we equate

$$
\begin{equation*}
\tanh \phi=\frac{v}{c} \tag{1.17}
\end{equation*}
$$

so that for small ϕ

$$
\begin{equation*}
\mathbf{x}^{\prime}=\mathbf{x}-\mathbf{v} t \tag{1.18}
\end{equation*}
$$

We can solving for $\sinh ^{2} \phi$ and $\cosh ^{2} \phi$ in terms of v / c using

$$
\begin{equation*}
\tanh ^{2} \phi=\frac{v^{2}}{c^{2}}=\frac{\sinh ^{2} \phi}{1+\sinh ^{2} \phi}=\frac{\cosh ^{2} \phi-1}{\cosh ^{2} \phi} . \tag{1.19}
\end{equation*}
$$

which after picking the positive root required for Galilean equivalence gives

$$
\begin{align*}
& \cosh \phi=\frac{1}{\sqrt{1-(\mathbf{v} / c)^{2}}} \equiv \gamma \\
& \sinh \phi=\frac{v / c}{\sqrt{1-(\mathbf{v} / c)^{2}}}=\gamma v / c . \tag{1.20}
\end{align*}
$$

The Lorentz boost, written out in full is

$$
\begin{equation*}
c t^{\prime}+\mathbf{x}^{\prime}=\mathbf{x}_{\perp}+\gamma\left(c t-\frac{\mathbf{v}}{c} \cdot \mathbf{x}\right)+\gamma(\hat{\mathbf{v}}(\hat{\mathbf{v}} \cdot \mathbf{x})-\mathbf{v} t) . \tag{1.21}
\end{equation*}
$$

Authors like Chappelle, et al., that also use paravectors [2], specify the form of the Lorentz transformation for the electromagnetic field, but for that transformation reversion is used instead of involution. I plan to explore that in a later post, starting from the STA formalism that I already understand, and see if I can make sense of the underlying rationale.

Bibliography

[1] William Baylis. Electrodynamics: a modern geometric approach, volume 17. Springer Science \& Business Media, 2004. 1.2
[2] James M Chappell, Samuel P Drake, Cameron L Seidel, Lachlan J Gunn, and Derek Abbott. Geometric algebra for electrical and electronic engineers. Proceedings of the IEEE, 102(9), 2014. 1.2
[3] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003. 1.1
[4] L. Landau and E. Lifshitz. The Classical theory of fields. Addison-Wesley, 1951. 1.2

