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Lorentz boosts in GA paravector notation.

1.1 Motivation.

The notation I prefer for relativistic geometric algebra uses Hestenes’ space time algebra (STA) [3],
where the basis is a four dimensional space

{
γµ

}
, subject to Dirac matrix like relations γµ · γν = ηµν.

In this formalism a four vector is just the sum of the products of coordinates and basis vectors, for
example, using summation convention

(1.1)x = xµγµ.

The invariant for a four-vector in STA is just the square of that vector

(1.2)

x2 = (xµγµ) · (xνγν)

= ∑
µ

(xµ)2(γµ)2

= (x0)2 −
3

∑
k=1

(xk)2

= (ct)2 − x2.

Recall that a four-vector is time-like if this squared-length is positive, spacelike if negative, and
light-like when zero.

Time-like projections are possible by dotting with the “lab-frame” time like basis vector γ0

ct = x · γ0 = x0, (1.3)

and space-like projections are wedges with the same

x = x · γ0 = xkσk, (1.4)

where sums over Latin indexes k ∈ {1, 2, 3} are implied, and where the elements σk

(1.5)σk = γkγ0.

which are bivectors in STA, can be viewed as an Euclidean vector basis {σk}.
Rotations in STA involve exponentials of space like bivectors θ = aijγi ∧ γj
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x′ = eθ/2xe−θ/2. (1.6)

Boosts, on the other hand, have exactly the same form, but the exponentials are with respect to
space-time bivectors arguments, such as θ = a ∧ γ0, where a is any four-vector.

Observe that both boosts and rotations necessarily conserve the space-time length of a four vector
(or any multivector with a scalar square).

(1.7)

(
x′
)2 =

(
eθ/2xe−θ/2

) (
eθ/2xe−θ/2

)
= eθ/2x

(
e−θ/2eθ/2

)
xe−θ/2

= eθ/2x2e−θ/2

= x2eθ/2e−θ/2

= x2.

1.2 Paravectors.

Paravectors, as used by Baylis [1], represent four-vectors using a Euclidean multivector basis
{

eµ

}
,

where e0 = 1. The conversion between STA and paravector notation requires only multiplication
with the timelike basis vector for the lab frame γ0

(1.8)

X = xγ0

=
(

x0γ0 + xkγk

)
γ0

= x0 + xkγkγ0

= x0 + x
= ct + x,

We need a different structure for the invariant length in paravector form. That invariant length is

(1.9)
x2 = ((ct + x) γ0) ((ct + x) γ0)

= ((ct + x) γ0) (γ0 (ct − x))
= (ct + x) (ct − x) .

Baylis introduces an involution operator M which toggles the sign of any vector or bivector grades
of a multivector. For example, if M = a + a + Ib + Ic, where a, c ∈ R and a, b ∈ R3 is a multivector
with all grades 0, 1, 2, 3, then the involution of M is

(1.10)M = a − a − Ib + Ic.

Utilizing this operator, the invariant length for a paravector X is XX.
Let’s consider how boosts and rotations can be expressed in the paravector form. The half angle

operator for a boost along the spacelike v = vv̂ direction has the form

(1.11)L = e−v̂φ/2,
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(1.12)

X′ = ct′ + x′

= x′γ0

= LxL†

= e−v̂φ/2xµγµev̂φ/2γ0

= e−v̂φ/2xµγµγ0e−v̂φ/2

= e−v̂φ/2 (x0 + x
)

e−v̂φ/2

= LXL.

Because the involution operator toggles the sign of vector grades, it is easy to see that the required
invariance is maintained

(1.13)

X′X′ = LXLLXL
= LXLLXL
= LXXL
= XXLL
= XX.

Let’s explicitly expand the transformation of eq. (1.12), so we can relate the rapidity angle φ to the
magnitude of the velocity. This is most easily done by splitting the spacelike component x of the four
vector into its projective and rejective components

(1.14)

x = v̂v̂x
= v̂ (v̂ · x + v̂ ∧ x)
= v̂ (v̂ · x) + v̂ (v̂ ∧ x)
= x‖ + x⊥.

The exponential

(1.15)e−v̂φ/2 = cosh
(
φ/2

)
− v̂ sinh

(
φ/2

)
,

commutes with any scalar grades and with x‖, but anticommutes with x⊥, so

(1.16)

X′ =
(
ct + x‖

)
e−v̂φ/2e−v̂φ/2 + x⊥ev̂φ/2e−v̂φ/2

=
(
ct + x‖

)
e−v̂φ + x⊥

= (ct + v̂ (v̂ · x))
(
cosh φ − v̂ sinh φ

)
+ x⊥

= x⊥ +
(
ct cosh φ − (v̂ · x) sinh φ

)
+ v̂

(
(v̂ · x) cosh φ − ct sinh φ

)
= x⊥ + cosh φ

(
ct − (v̂ · x) tanh φ

)
+ v̂ cosh φ

(
v̂ · x − ct tanh φ

)
.

Employing the argument from [4], we want φ defined so that this has structure of a Galilean trans-
formation in the limit where φ→ 0. This means we equate

(1.17)tanh φ =
v
c

,
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so that for small φ

(1.18)x′ = x − vt.

We can solving for sinh2 φ and cosh2 φ in terms of v/c using

tanh2 φ =
v2

c2 =
sinh2 φ

1 + sinh2 φ
=

cosh2 φ− 1
cosh2 φ

. (1.19)

which after picking the positive root required for Galilean equivalence gives

(1.20)

cosh φ =
1√

1− (v/c)2
≡ γ

sinh φ =
v/c√

1− (v/c)2
= γv/c.

The Lorentz boost, written out in full is

(1.21)ct′ + x′ = x⊥ + γ
(

ct − v
c
· x
)

+ γ (v̂ (v̂ · x)− vt) .

Authors like Chappelle, et al., that also use paravectors [2], specify the form of the Lorentz transfor-
mation for the electromagnetic field, but for that transformation reversion is used instead of involu-
tion. I plan to explore that in a later post, starting from the STA formalism that I already understand,
and see if I can make sense of the underlying rationale.
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