Peeter Joot

peeterjoot@pm.me
Momentum of scalar field
1.1 Expansion of the field momentum.
Way back in lecture 8, it was claimed that
/d3x7'[8k4> /(2 )3p al plp- (1.1)

If I compute this, I get a normal ordered variation of this operator, but also get some time dependent
terms. Here’s the computation (dropping hats)
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What is the rationale for ignoring those time dependent terms? Does normal ordering also implic-
itly drop any non-paired creation/annihilation operators? If so, why?

1.2 Conservation of the field momentum.

This follows up on unanswered questions related to the apparent time dependent terms in the previ-
ous expansion of P’ for a scalar field.

It turns out that examining the reasons that we can say that the field momentum is conserved also
sheds some light on the question. P' is not an a-priori conserved quantity, but we may use the charge
conservation argument to justify this despite it not having a four-vector nature (i.e. with zero four
divergence.)

The momentum P’ that we have defined is related to the conserved quantity T, the energy-
momentum tensor, which satisfies 0 = 9, T% by Noether’s theorem (this was the conserved quantity
associated with a spacetime translation.)

That tensor was

W= 9hpa'p — gL, (1.6)

and can be used to define the momenta
/ BT = / Px20pa e

= /d3x7tak<p.

Charge Q' = [ d®xj° was conserved with respect to a limiting surface argument, and we can make
a similar “beer can integral” argument for P’, integrating over a large time interval t € [T, T] as

(1.7)



sketched in fig. 1.1. That is
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Figure 1.1: Cylindrical spacetime boundary.

The first integral can be said to vanish if the field energy goes to zero at the time boundaries, and
the last integral reduces to
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The sin term can be interpretted as a sinc like function of wj, which vanishes for large p. It’s not en-

tirely sinc like for a massive field as wp = +/ p? + m?, which never hits zero, as shown in fig. 1.2. Van-
ishing for large p doesn’t help the whole integral vanish, but we can resort to the Riemann-Lebesque



Figure 1.2: sin(2wpT) /wp

lemma [1] instead and interpret this integral as one with a plain old high frequency oscillation that is
presumed to vanish (i.e. the rest is well behaved enough that it can be labelled as L; integrable.)

We see that only the non-time dependent portion of P matters from a conserved quantity point of
view, and having killed off all the time dependent terms, we are left with a conservation relationship
for the momenta V - P = 0, where P in normal order is just

dp
P = /Wpa;ap. (1.10)
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