Peeter Joot peeterjoot@pm.me

Momentum of scalar field

1.1 Expansion of the field momentum.

Way back in lecture 8, it was claimed that

$$
\begin{equation*}
p^{k}=\int d^{3} x \hat{\pi} \partial^{k} \hat{\phi}=\int \frac{d^{3} p}{(2 \pi)^{3}} p^{k} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \tag{1.1}
\end{equation*}
$$

If I compute this, I get a normal ordered variation of this operator, but also get some time dependent terms. Here's the computation (dropping hats)

$$
\begin{align*}
P^{k} & =\int d^{3} x \hat{\pi} \partial^{k} \phi \\
& =\int d^{3} x \partial_{0} \phi \partial^{k} \phi \tag{1.2}\\
& =\int d^{3} x \frac{d^{3} p d^{3} q}{(2 \pi)^{6}} \frac{1}{\sqrt{2 \omega_{p} 2 \omega_{q}}} \partial_{0}\left(a_{\mathbf{p}} e^{-i p \cdot x}+a_{\mathbf{p}}^{\dagger} e^{i p \cdot x}\right) \partial^{k}\left(a_{\mathbf{q}} e^{-i q \cdot x}+a_{\mathbf{q}}^{\dagger} e^{i q \cdot x}\right) .
\end{align*}
$$

The exponential derivatives are

$$
\begin{align*}
\partial_{0} e^{ \pm i p \cdot x} & =\partial_{0} e^{ \pm i p_{\mu} x^{\mu}} \tag{1.3}\\
& = \pm i p_{0} \partial_{0} e^{ \pm i p \cdot x}
\end{align*}
$$

and

$$
\begin{align*}
\partial^{k} e^{ \pm i p \cdot x} & =\partial^{k} e^{ \pm i p^{\mu} x_{\mu}} \tag{1.4}\\
& = \pm i p^{k} e^{ \pm i p \cdot x}
\end{align*}
$$

$$
\begin{align*}
& P^{k}=-\int d^{3} x \frac{d^{3} p d^{3} q}{(2 \pi)^{6}} \frac{1}{\sqrt{2 \omega_{p} 2 \omega_{q}}} p_{0} q^{k}\left(-a_{\mathbf{p}} e^{-i p \cdot x}+a_{\mathbf{p}}^{\dagger} e^{i p \cdot x}\right)\left(-a_{\mathbf{q}} e^{-i q \cdot x}+a_{\mathbf{q}}^{\dagger} e^{i q \cdot x}\right) \\
&=-\frac{1}{2} \int d^{3} x \frac{d^{3} p d^{3} q}{(2 \pi)^{6}} \sqrt{\frac{\omega_{p}}{\omega_{q}}} q^{k}\left(a_{\mathbf{p}} a_{\mathbf{q}} e^{-i(p+q) \cdot x}+a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} e^{i(p+q) \cdot x}-a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} e^{i(q-p) \cdot x}-a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i(p-q) \cdot x}\right) \\
&=\frac{1}{2} \int \frac{d^{3} p d^{3} q}{(2 \pi)^{3}} \sqrt{\frac{\omega_{p}}{\omega_{q}}} q^{k}\left(-a_{\mathbf{p}} a_{\mathbf{q}} e^{-i\left(\omega_{\mathbf{p}}+\omega_{\mathbf{q}}\right) t} \delta^{3}(\mathbf{p}+\mathbf{q})-a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}}^{\dagger} e^{i\left(\omega_{\mathbf{p}}+\omega_{\mathbf{q}}\right) t} \delta^{3}(-\mathbf{p}-\mathbf{q})\right. \tag{1.5}\\
& \\
&\left.\quad+a_{\mathbf{p}} a_{\mathbf{q}}^{\dagger} \mathbf{e}^{i\left(\omega_{\mathbf{q}}-\omega_{\mathbf{p}}\right) t} \delta^{3}(\mathbf{p}-\mathbf{q})+a_{\mathbf{p}}^{\dagger} a_{\mathbf{q}} e^{i\left(\omega_{\mathbf{p}}-\omega_{\mathbf{q}}\right) t} \delta^{3}(\mathbf{q}-\mathbf{p})\right) \\
&= \frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} p^{k}\left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger}-a_{\mathbf{p}} a_{-\mathbf{p}} e^{-2 i \omega_{\mathbf{p}} t}-a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} \mathbf{e}^{2 i \omega_{\mathbf{p}} t}\right) .
\end{align*}
$$

What is the rationale for ignoring those time dependent terms? Does normal ordering also implicitly drop any non-paired creation/ annihilation operators? If so, why?

1.2 Conservation of the field momentum.

This follows up on unanswered questions related to the apparent time dependent terms in the previous expansion of P^{i} for a scalar field.
It turns out that examining the reasons that we can say that the field momentum is conserved also sheds some light on the question. P^{i} is not an a-priori conserved quantity, but we may use the charge conservation argument to justify this despite it not having a four-vector nature (i.e. with zero four divergence.)

The momentum P^{i} that we have defined is related to the conserved quantity $T^{0 \mu}$, the energymomentum tensor, which satisfies $0=\partial_{\mu} T^{0 \mu}$ by Noether's theorem (this was the conserved quantity associated with a spacetime translation.)

That tensor was

$$
\begin{equation*}
T^{\mu v}=\partial^{\mu} \phi \partial^{v} \phi-g^{\mu v} \mathcal{L}, \tag{1.6}
\end{equation*}
$$

and can be used to define the momenta

$$
\begin{align*}
\int d^{3} x T^{0 k} & =\int d^{3} x \partial^{0} \phi \partial^{k} \phi \tag{1.7}\\
& =\int d^{3} x \pi \partial^{k} \phi .
\end{align*}
$$

Charge $Q^{i}=\int d^{3} x j^{0}$ was conserved with respect to a limiting surface argument, and we can make a similar "beer can integral" argument for P^{i}, integrating over a large time interval $t \in[-T, T]$ as
sketched in fig. 1.1. That is

$$
\begin{align*}
0 & =\partial_{\mu} \int d^{4} x T^{0 \mu} \\
& =\partial_{0} \int d^{4} x T^{00}+\partial_{k} \int d^{4} x T^{0 k} \\
& =\partial_{0} \int_{-T}^{T} d t \int d^{3} x T^{00}+\partial_{k} \int_{-T}^{T} d t \int d^{3} x T^{0 k} \\
& =\partial_{0} \int_{-T}^{T} d t \int d^{3} x T^{00}+\partial_{k} \int_{-T}^{T} d t \frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} p^{k}\left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger}-a_{\mathbf{p}} a_{-\mathbf{p}} e^{-2 i \omega_{\mathbf{p}} t}-a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} e^{2 i \omega_{\mathbf{p}} t}\right) \\
& =\left.\int d^{3} x T^{00}\right|_{-T} ^{T}+T \partial_{k} \int \frac{d^{3} p}{(2 \pi)^{3}} p^{k}\left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger}\right)-\frac{1}{2} \partial_{k} \int_{-T}^{T} d t \int \frac{d^{3} p}{(2 \pi)^{3}} p^{k}\left(a_{\mathbf{p}} a_{-\mathbf{p}} e^{-2 i \omega_{\mathbf{p}} t}+a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} e^{2 i \omega_{\mathbf{p}} t}\right) \tag{1.8}
\end{align*}
$$

Figure 1.1: Cylindrical spacetime boundary.
The first integral can be said to vanish if the field energy goes to zero at the time boundaries, and the last integral reduces to

$$
\begin{align*}
& -\frac{1}{2} \partial_{k} \int_{-T}^{T} d t \int \frac{d^{3} p}{(2 \pi)^{3}} p^{k}\left(a_{\mathbf{p}} a_{-\mathbf{p}} e^{-2 i \omega_{\mathbf{p}} t}+a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} e^{2 i \omega_{\mathbf{p}} t}\right) \\
& =-\int \frac{d^{3} p}{2(2 \pi)^{3}} p^{k}\left(a_{\mathbf{p}} a_{-\mathbf{p}} \frac{\sin \left(-2 \omega_{\mathbf{p}} T\right)}{-2 \omega_{\mathbf{p}}}+a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{\dagger} \frac{\sin \left(2 \omega_{\mathbf{p}} T\right)}{2 \omega_{\mathbf{p}}}\right) \tag{1.9}\\
& =-\int \frac{d^{3} p}{2(2 \pi)^{3}} p^{k}\left(a_{\mathbf{p}} a_{-\mathbf{p}}+a_{\mathbf{p}}^{\dagger} a_{-\mathbf{p}}^{+}\right) \frac{\sin \left(2 \omega_{\mathbf{p}} T\right)}{2 \omega_{\mathbf{p}}} .
\end{align*}
$$

The sin term can be interpretted as a sinc like function of $\omega_{\mathbf{p}}$ which vanishes for large \mathbf{p}. It's not entirely sinc like for a massive field as $\omega_{\mathbf{p}}=\sqrt{\mathbf{p}^{2}+m^{2}}$, which never hits zero, as shown in fig. 1.2. Vanishing for large \mathbf{p} doesn't help the whole integral vanish, but we can resort to the Riemann-Lebesque

Figure 1.2: $\sin \left(2 \omega_{\mathrm{p}} T\right) / \omega_{\mathrm{p}}$
lemma [1] instead and interpret this integral as one with a plain old high frequency oscillation that is presumed to vanish (i.e. the rest is well behaved enough that it can be labelled as L_{1} integrable.)

We see that only the non-time dependent portion of \mathbf{P} matters from a conserved quantity point of view, and having killed off all the time dependent terms, we are left with a conservation relationship for the momenta $\boldsymbol{\nabla} \cdot \mathbf{P}=0$, where \mathbf{P} in normal order is just

$$
\begin{equation*}
: \mathbf{P}:=\int \frac{d^{3} p}{(2 \pi)^{3}} \mathbf{p} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} \tag{1.10}
\end{equation*}
$$

Bibliography

[1] Wikipedia contributors. Riemann-lebesgue lemma - Wikipedia, the free encyclopedia, 2018. URL https://en.wikipedia.org/w/index.php?title=Riemann\�\�\�Lebesgue_ lemma\&oldid=856778941. [Online; accessed 29-October-2018]. 1.2

