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Momentum operator for the Dirac field?

In the notes I have for last Monday’s lecture I see the momentum operator defined by

(1.1)P =
2

∑
s=1

∫ d3q
(2π)3 p

(
as†

p as
p + bs†

p bs
p

)
.

There’s a “use Noether’s theorem” comment associated with this. For the scalar field, using Noether’s
theorem, we identified the conserved charge of a spacetime translation as the momentum operator

(1.2)
Pi =

∫
d3xT0i

= −
∫

d3xπ(x)∇φ(x),

and if we plugged in the creation and anhillation operator representation of π, φ, out comes

(1.3)P =
1
2

∫ d3q
(2π)3 p

(
a†

pap + apa†
p

)
,

(plus e±2iωpt terms that we can argue away.)
It wasn’t clear to me how this worked with the Dirac field, but it turns out that this does follow

systematically as expected. For a spacetime translation

(1.4)xµ → xµ + aµ,

we find
(1.5)δΨ = −aµ∂µΨ,

so for the Dirac Lagrangian, we have

(1.6)

δL = δ
(
Ψ
(
iγµ∂µ − m

)
Ψ
)

= (δΨ)
(
iγµ∂µ − m

)
Ψ + Ψ

(
iγµ∂µ − m

)
δΨ

= (−aσ∂σΨ)
(
iγµ∂µ − m

)
Ψ + Ψ

(
iγµ∂µ − m

)
(−aσ∂σΨ)

= −aσ∂σL
= ∂σ(−aσL),

1



i.e. Jµ = −aµL. To plugging this into the Noether current calculating machine, we have

(1.7)
∂L

∂(∂µΨ)
=

∂

∂(∂µΨ)
(
Ψiγσ∂σΨ − mΨΨ

)
= Ψiγµ,

and
(1.8)

∂L
∂(∂µΨ)

= 0,

so

(1.9)

jµ = (δΨ)
∂L

∂(∂µΨ)
+

∂L
∂(∂µΨ)

(δΨ)− aµL

= Ψiγµ(−aσ∂σΨ)− aσδµ
σL

= −aσ
(
Ψiγµ∂σΨ + δµ

σL
)

= −aν

(
Ψiγµ∂νΨ + gµνL

)
.

We can now define an energy-momentum tensor

(1.10)Tµν = Ψiγµ∂νΨ + gµνL.

A couple things are of notable in this tensor. One is that it is not symmetric, and there’s doesn’t appear
to be any hope of making it so. For example, the space+time components are way different

(1.11)
T0k = Ψiγ0∂kΨ

Tk0 = Ψiγk∂0Ψ,

so if we want a momentum like creature, we have to use T0k, not Tk0. The charge associated with that
current is

(1.12)
Qk =

∫
d3xΨiγ0∂kΨ

=
∫

d3xΨ†(−i∂k)Ψ,

or translating from component to vector form

(1.13)P =
∫

d3xΨ†(−i∇)Ψ,

which is the how the momentum operator is first stated in [2]. Here the vector notation doesn’t have any
specific representation, but it is interesting to observe how this is directly related to the massless Dirac
Lagrangian
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(1.14)

L(m = 0) = Ψiγµ∂µΨ

= Ψ†iγµ∂µΨ

= Ψ†i(∂0 + γ0γk∂k)Ψ
= Ψ†i(∂0 − γ0γk∂k)Ψ,

but since γ0γk is a 4× 4 representation of the Pauli matrix σk
1 Lagrangian itself breaks down into

(1.15)L(m = 0) = Ψ†i∂0Ψ + σ ·
(

Ψ†(−i∇)Ψ
)

,

components, and lo and behold, out pops the momentum operator density! Some part of this should
be expected this since the Dirac equation in momentum space is just /p− m = 0, so there is an intimate
connection with the operator portion and momentum.

The last detail to fill in is going from eq. (1.13) to eq. (1.1) using the a, b representation of the field.
That’s an algebraically messy looking job that I don’t feel like trying at the moment.

1There is ambiguity as to what order of products γ0γk, or γkγ0 to pick to represent the Pauli basis ([1] uses γkγ0), but we also
have sign ambiguity in assembling a Noether charge from the conserved current, so I don’t think that matters.
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