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Hamiltonian for the non-homogeneous Klein-Gordon equation

In class we derived the field for the non-homogeneous Klein-Gordon equation
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This means that we have
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and could plug these into the Hamiltonian
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to find H in terms of j̃ and a†
p, ap. The result was mentioned in class, and it was left as an exercise to

verify.
There’s an easy way and a dumb way to do this exercise. I did it the dumb way, and then after

suffering through two long pages, where the equations were so long that I had to write on the paper
sideways, I realized the way I should have done it.

The easy way is to observe that we’ve already done exactly this for the case j̃ = 0, which had the
answer
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To handle this more general case, all we have to do is apply a transformation

(1.5)ap → ap +
i j̃(p)√

2ωp
,

1



to eq. (1.4), which gives
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Like the j̃ = 0 case, we can use normal ordering. This is easily seen by direct expansion:
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Because j̃ is just a complex valued function, it commutes with ap, a†
p, and these are equal up to the

normal ordering, allowing us to write
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which is the result mentioned in class.
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