## Hamiltonian for the non-homogeneous Klein-Gordon equation

In class we derived the field for the non-homogeneous Klein-Gordon equation

$$
\begin{align*}
\phi(x) & =\left.\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{\mathbf{p}}}}\left(e^{-i p \cdot x}\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)+e^{i p \cdot x}\left(a_{\mathbf{p}}^{\dagger}-\frac{i \tilde{j}^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\right)\right|_{p^{0}=\omega_{\mathbf{p}}}  \tag{1.1}\\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{\mathbf{p}}}}\left(e^{-i \omega_{\mathbf{p}} t+i \mathbf{p} \cdot \mathbf{x}}\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)+e^{i \omega_{\mathbf{p}} t-i \mathbf{p} \cdot \mathbf{x}}\left(a_{\mathbf{p}}^{\dagger}-\frac{i \tilde{j}^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\right)
\end{align*}
$$

This means that we have

$$
\begin{gather*}
\pi=\dot{\phi}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{i \omega_{\mathbf{p}}}{\sqrt{2 \omega_{\mathbf{p}}}}\left(-e^{-i \omega_{\mathbf{p}} t+i \mathbf{p} \cdot \mathbf{x}}\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)+e^{i \omega_{\mathbf{p}} t-i \mathbf{p} \cdot \mathbf{x}}\left(a_{\mathbf{p}}^{\dagger}-\frac{\tilde{j}^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\right)  \tag{1.2}\\
(\nabla \phi)_{k}==\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{i p_{k}}{\sqrt{2 \omega_{\mathbf{p}}}}\left(e^{-i \omega_{\mathbf{p}} t+i \mathbf{p} \cdot \mathbf{x}}\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)-e^{i \omega_{\mathbf{p}} t-i \mathbf{p} \cdot \mathbf{x}}\left(a_{\mathbf{p}}^{+}-\frac{i \tilde{j}^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\right)
\end{gather*}
$$

and could plug these into the Hamiltonian

$$
\begin{equation*}
H=\int d^{3} p\left(\frac{1}{2} \pi^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{m^{2}}{2} \phi^{2}\right) \tag{1.3}
\end{equation*}
$$

to find $H$ in terms of $\tilde{j}$ and $a_{\mathbf{p}}^{\dagger}, a_{\mathbf{p}}$. The result was mentioned in class, and it was left as an exercise to verify.

There's an easy way and a dumb way to do this exercise. I did it the dumb way, and then after suffering through two long pages, where the equations were so long that I had to write on the paper sideways, I realized the way I should have done it.

The easy way is to observe that we've already done exactly this for the case $\tilde{j}=0$, which had the answer

$$
\begin{equation*}
H=\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{\mathbf{p}}\left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+a_{\mathbf{p}} a_{\mathbf{p}}^{\dagger}\right) \tag{1.4}
\end{equation*}
$$

To handle this more general case, all we have to do is apply a transformation

$$
\begin{equation*}
a_{\mathbf{p}} \rightarrow a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}} \tag{1.5}
\end{equation*}
$$

to eq. (1.4), which gives

$$
\begin{align*}
H & =\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{\mathbf{p}}\left(\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)^{\dagger}\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)+\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)^{+}\right)  \tag{1.6}\\
& =\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{\mathbf{p}}\left(\left(a_{\mathbf{p}}^{\dagger}-\frac{i \tilde{j}^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)+\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\left(a_{\mathbf{p}}^{\dagger}-\frac{i \tilde{j}^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\right) .
\end{align*}
$$

Like the $\tilde{j}=0$ case, we can use normal ordering. This is easily seen by direct expansion:

$$
\begin{align*}
& \left(a_{\mathbf{p}}^{+}-\frac{i \tilde{j}^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)=a_{\mathbf{p}}^{+} a_{\mathbf{p}}-\frac{i \tilde{j}^{*}(p) a_{\mathbf{p}}}{\sqrt{2 \omega_{\mathbf{p}}}}+\frac{a_{\mathbf{p}}^{\dagger} \tilde{j}^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}+\frac{|j|^{2}}{2 \omega_{\mathbf{p}}} \\
& \left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\left(a_{\mathbf{p}}^{+}-\frac{i \tilde{j}^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)=a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+\frac{i \tilde{j}^{*}(p) a_{\mathbf{p}}^{+}}{\sqrt{2 \omega_{\mathbf{p}}}}-\frac{a_{\mathbf{p}} i^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}+\frac{|j|^{2}}{2 \omega_{\mathbf{p}}} . \tag{1.7}
\end{align*}
$$

Because $\tilde{j}$ is just a complex valued function, it commutes with $a_{\mathrm{p}}, a_{\mathrm{p}}^{\dagger}$, and these are equal up to the normal ordering, allowing us to write

$$
\begin{equation*}
: H:=\int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{\mathbf{p}}\left(a_{\mathbf{p}}^{\dagger}-\frac{i \tilde{j}^{*}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right)\left(a_{\mathbf{p}}+\frac{i \tilde{j}(p)}{\sqrt{2 \omega_{\mathbf{p}}}}\right) \tag{1.8}
\end{equation*}
$$

which is the result mentioned in class.

